Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Int J Mol Sci ; 25(11)2024 May 22.
Article in English | MEDLINE | ID: mdl-38891807

ABSTRACT

FOLFOXIRI chemotherapy is a first-line therapy for advanced or metastatic colorectal cancer (CRC), yet its therapeutic efficacy remains limited. Immunostimulatory therapies like oncolytic viruses can complement chemotherapies by fostering the infiltration of the tumor by immune cells and enhancing drug cytotoxicity. In this study, we explored the effect of combining the FOLFOXIRI chemotherapeutic agents with the oncolytic coxsackievirus B3 (CVB3) PD-H in the CRC cell line Colo320. Additionally, we examined the impact of the drugs on the expression of microRNAs (miRs), which could be used to increase the safety of oncolytic CVB3 containing corresponding miR target sites (miR-TS). The measurement of cytotoxic activity using the Chou-Talalay combination index approach revealed that PD-H synergistically enhanced the cytotoxic activity of oxaliplatin (OX), 5-fluorouracil (5-FU) and SN-38. PD-H replication was not affected by OX and SN-38 but inhibited by high concentrations of 5-FU. MiR expression levels were not or only slightly elevated by the drugs or with drug/PD-H combinations on Colo320 cells. Moreover, the drug treatment did not increase the mutation rate of the miR-TS inserted into the PD-H genome. The results demonstrate that the combination of FOLFOXIRI drugs and PD-H may be a promising approach to enhance the therapeutic effect of FOLFOXIRI therapy in CRC.


Subject(s)
Antineoplastic Combined Chemotherapy Protocols , Colorectal Neoplasms , Fluorouracil , Leucovorin , MicroRNAs , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Colorectal Neoplasms/therapy , Colorectal Neoplasms/drug therapy , Cell Line, Tumor , Fluorouracil/pharmacology , Oncolytic Virotherapy/methods , MicroRNAs/genetics , Oncolytic Viruses/genetics , Antineoplastic Combined Chemotherapy Protocols/pharmacology , Antineoplastic Combined Chemotherapy Protocols/therapeutic use , Leucovorin/pharmacology , Leucovorin/therapeutic use , Organoplatinum Compounds/pharmacology , Oxaliplatin/pharmacology , Enterovirus B, Human/drug effects , Combined Modality Therapy , Irinotecan/pharmacology
2.
Biol Proced Online ; 26(1): 11, 2024 Apr 25.
Article in English | MEDLINE | ID: mdl-38664647

ABSTRACT

BACKGROUND: The efficacy of oncolytic viruses (OV) in cancer treatment depends on their ability to successfully infect and destroy tumor cells. However, patients' tumors vary, and in the case of individual insensitivity to an OV, therapeutic efficacy is limited. Here, we present a protocol for rapid generation of tumor cell-specific adapted oncolytic coxsackievirus B3 (CVB3) with enhanced oncolytic potential and a satisfactory safety profile. This is achieved by combining directed viral evolution (DVE) with genetic modification of the viral genome and the use of a microRNA-dependent regulatory tool. METHODS: The oncolytic CVB3 variant PD-H was adapted to the refractory colorectal carcinoma cell line Colo320 through serial passaging. XTT assays and virus plaque assays were used to determine virus cytotoxicity and virus replication in vitro. Recombinant PD-H variants were generated through virus mutagenesis. Apoptosis was detected by Western blots, Caspase 3/7 assays, and DAPI staining. The therapeutic efficacy and safety of the adapted recombinant OV PD-SK-375TS were assessed in vivo using a subcutaneous Colo320 xenograft mouse model. RESULTS: PD-H was adapted to the colorectal cancer cell line Colo320 within 10 passages. Sequencing of passage 10 virus P-10 revealed a heterogenous virus population with five nucleotide mutations resulting in amino acid substitutions. The genotypically homogeneous OV PD-SK was generated by inserting the five detected mutations of P-10 into the genome of PD-H. PD-SK showed significantly stronger replication and cytotoxicity than PD-H in Colo320 cells, but not in other colorectal carcinoma cell lines. Increase of apoptosis induction was detected as key mechanisms of Colo320 cell-specific adaptation of PD-SK. For in vivo safety PD-SK was engineered with target sites of the miR-375 (miR-375TS) to exclude virus replication in normal tissues. PD-SK-375TS, unlike the PD-H-375TS not adapted homolog suppressed the growth of subcutaneous Colo320 tumors in nude mice without causing any side effects. CONCLUSION: Taken together, here we present an optimized protocol for the rapid generation of tumor cell-specific adapted oncolytic CVB3 based on the oncolytic CVB3 strain PD-H. The protocol is promising for the generation of personalized OV for tumor therapy and has the potential to be applied to other OV.

3.
Mol Ther Nucleic Acids ; 32: 923-936, 2023 Jun 13.
Article in English | MEDLINE | ID: mdl-37346978

ABSTRACT

RNA interference has demonstrated its potential as an antiviral therapy for treatment of human adenovirus (hAd) infections. The only existing viral vector-based system for delivery of anti-adenoviral artificial microRNAs available for in vivo use, however, has proven to be inefficient in therapeutic applications. In this study, we investigated the potential of stabilized small interfering RNA (siRNA) encapsulated in lipid nanoparticles (LNPs) for treatment of hepatic hAd serotype 5 (hAd5) infection in an hAd infection model using immunosuppressed Syrian hamsters. The siRNA sipTPmod directed against the adenoviral pre-terminal protein (pTP) and containing 2'-O-methyl modifications as well as phosphorothioate linkages effectively inhibited hAd5 infection in vitro. In light of this success, sipTPmod was encapsulated in LNPs containing the cationic lipid XL-10, which enables hepatocyte-specific siRNA transfer, and injected intravenously into hAd5-infected immunosuppressed Syrian hamsters. This resulted in a significant reduction of liver hAd5 titers, a trend toward reduced liver injury and inflammation, and reduction of viral titers in the blood and spleen compared with hAd5-infected animals that received a non-silencing siRNA. These effects were demonstrated in animals infected with low and moderate doses of hAd5. These data demonstrate that hepatic hAd5 infection can be successfully treated with anti-adenoviral sipTPmod encapsulated in LNPs.

4.
Methods Mol Biol ; 2521: 259-282, 2022.
Article in English | MEDLINE | ID: mdl-35733003

ABSTRACT

The members of the picornavirus family include various viruses which, due to their impressive oncolytic activity, have the potential to be used for the treatment of cancer. However, the replication of these oncolytic viruses (OV) is not limited to tumor cells but can also take place in various normal tissues. To increase the safety of these OV, target sites (miR-TS) of microRNAs, which are expressed in normal tissues but are absent or only expressed at low levels in cancer cells, can be inserted into the viral genome. Here we describe how miR-TS can easily be inserted into the complementary DNA (cDNA) of coxsackievirus B3 (CVB3) RNA genome using the In-Fusion cloning technology. Here we provide the step-by-step protocol, how miR-TS containing recombinant CVB3 can be generated from these viral cDNA constructs, how the virus is amplified, purified and concentrated, and how the functionality of the miR-TS within the viral genome can be confirmed.


Subject(s)
MicroRNAs , Oncolytic Viruses , DNA, Complementary , Enterovirus B, Human/genetics , Genome, Viral , HeLa Cells , Humans , MicroRNAs/genetics , Oncolytic Viruses/genetics , Virus Replication/genetics
5.
Viruses ; 13(10)2021 09 24.
Article in English | MEDLINE | ID: mdl-34696348

ABSTRACT

The coxsackievirus B3 strain PD-0 has been proposed as a new oncolytic virus for the treatment of colorectal carcinoma. Here, we generated a cDNA clone of PD-0 and analyzed the virus PD-H, newly generated from this cDNA, in xenografted and syngenic models of colorectal cancer. Replication and cytotoxic assays revealed that PD-H replicated and lysed colorectal carcinoma cell lines in vitro as well as PD-0. Intratumoral injection of PD-H into subcutaneous DLD-1 tumors in nude mice resulted in strong inhibition of tumor growth and significantly prolonged the survival of the animals, but virus-induced systemic infection was observed in one of the six animals. In a syngenic mouse model of subcutaneously growing Colon-26 tumors, intratumoral administration of PD-H led to a significant reduction of tumor growth, the prolongation of animal survival, the prevention of tumor-induced cachexia, and the elevation of CD3+ and dendritic cells in the tumor microenvironment. No virus-induced side effects were observed. After intraperitoneal application, PD-H induced weak pancreatitis and myocarditis in immunocompetent mice. By equipping the virus with target sites of miR-375, which is specifically expressed in the pancreas, organ infections were prevented. Moreover, employment of this virus in a syngenic mouse model of CT-26 peritoneal carcinomatosis resulted in a significant reduction in tumor growth and an increase in animal survival. The results demonstrate that the immune status of the host, the route of virus application, and the engineering of the virus with target sites of suitable microRNAs are crucial for the use of PD-H as an oncolytic virus.


Subject(s)
Coxsackievirus Infections/immunology , Enterovirus/physiology , Oncolytic Viruses/physiology , Animals , CHO Cells , Colorectal Neoplasms , Cricetulus , Enterovirus/classification , HEK293 Cells , HeLa Cells , Humans , Mice , Mice, Nude , MicroRNAs , Myocarditis , Neoplasms , Oncolytic Viruses/classification
6.
J Mol Med (Berl) ; 99(9): 1279-1291, 2021 09.
Article in English | MEDLINE | ID: mdl-34028599

ABSTRACT

Arming of oncolytic viruses with tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) has been shown as a viable approach to increase the antitumor efficacy in melanoma. However, melanoma cells may be partially or completely resistant to TRAIL or develop TRAIL resistance, thus counteracting the antitumor efficiency of TRAIL-armed oncolytic viruses. Recently, we found that TRAIL resistance in melanoma cells can be overcome by inhibition of antiapoptotic Bcl-2 protein myeloid cell leukemia 1 (Mcl-1). Here, we investigated whether the cytotoxicity of AdV-TRAIL, an oncolytic adenovirus, which expresses TRAIL after induction by doxycycline (Dox), can be improved in melanoma cells by silencing of Mcl-1. Two melanoma cell lines, the TRAIL-resistant MeWo and the TRAIL-sensitive Mel-HO were investigated. Treatment of both cell lines with AdV-TRAIL resulted in a decrease of cell viability, which was caused by an increase of apoptosis and necrosis. The proapoptotic effects were dependent on induction of TRAIL by Dox and were more pronounced in Mel-HO than in MeWo cells. SiRNA-mediated silencing of Mcl-1 resulted in a further significant decrease of cell viability and a further increase of apoptosis and necrosis in AdV-TRAIL-infected MeWo and Mel-HO cells. However, while in absolute terms, the effects were more pronounced in Mel-HO cells, in relative terms, they were stronger in MeWo cells. These results show that silencing of Mcl-1 represents a suitable approach to increase the cytotoxicity of a TRAIL-armed oncolytic adenovirus in melanoma cells. KEY MESSAGES: • Cytotoxicity of TRAIL-expressing adenovirus can be enhanced by silencing of Mcl-1. • The effect occurs in TRAIL-sensitive and TRAIL-resistant melanoma cells. • Increase of apoptosis is the main mechanism induced by Mcl-1 silencing.


Subject(s)
Adenoviridae/genetics , Apoptosis , Gene Silencing , Genetic Therapy , Melanoma/therapy , Myeloid Cell Leukemia Sequence 1 Protein/genetics , Oncolytic Virotherapy , Oncolytic Viruses/genetics , Skin Neoplasms/therapy , TNF-Related Apoptosis-Inducing Ligand/genetics , Adenoviridae/metabolism , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Cell Line, Tumor , Gene Expression Regulation, Neoplastic , Humans , Melanoma/genetics , Melanoma/metabolism , Melanoma/virology , Myeloid Cell Leukemia Sequence 1 Protein/metabolism , Necrosis , Oncolytic Viruses/metabolism , Skin Neoplasms/genetics , Skin Neoplasms/metabolism , Skin Neoplasms/virology , TNF-Related Apoptosis-Inducing Ligand/metabolism
7.
Hum Gene Ther ; 32(3-4): 216-230, 2021 02.
Article in English | MEDLINE | ID: mdl-33481658

ABSTRACT

Coxsackievirus B3 (CVB3) has strong oncolytic activity in colorectal carcinoma but it also infects the pancreas and the heart. To improve the safety of the virus, here we investigated whether pancreas and cardiac toxicity can be prevented by insertion of target sites (TS), which are complementary to miR-375 and miR-1 into the viral genome. Although miR-375 and miR-1 are abundantly expressed in the pancreas and in the heart, respectively, their expression levels are low in colorectal carcinomas, which allows the carcinomas to be selectively attacked. To investigate the importance of the microRNAs, two viruses were engineered, H3N-375TS containing only miR-375TS and H3N-375/1TS containing miR-375TS and miR-1TS. In vitro, both viruses replicated in and lysed colorectal carcinoma cells, similar to a nontargeted control virus H3N-39TS, whereas they were strongly attenuated in cell lines transiently or endogenously expressing the corresponding microRNAs. In vivo, the control virus H3N-39TS induced strong infection of the pancreas and the heart, which led to fatal disease within 4 days after a single intratumoral virus injection in mice xenografted with colorectal DLD-1 cell tumors. In contrast, three intratumoral injections of H3N-375TS or H3N-375/1TS failed to induce virus-induced sickness. In the animals, both viruses were completely ablated from the pancreas and H3N-375/1TS was also ablated from the heart, whereas the cardiac titers of H3N-375TS were strongly reduced. Long-term investigations of the DLD-1 tumor model confirmed lack of virus-induced adverse effects in H3N-375TS- and H3N-375/1TS-treated mice. There was no mortality, and the pancreas and the heart were free of pathological alterations. Regarding the therapeutic efficiency, the treated animals showed high and long-lasting H3N-375TS and H3N-375/1TS persistence in the tumor and significantly slower tumor growth. These data demonstrate that miR-375- and miR-1-mediated virus detargeting from the pancreas and heart is a highly effective strategy to prevent toxicity of oncolytic CVB3.


Subject(s)
Colorectal Neoplasms , MicroRNAs , Animals , Cardiotoxicity , Colorectal Neoplasms/genetics , Colorectal Neoplasms/therapy , Mice , Mice, Inbred BALB C , MicroRNAs/genetics , Pancreas
8.
FEBS Lett ; 594(4): 763-775, 2020 02.
Article in English | MEDLINE | ID: mdl-31643074

ABSTRACT

Coxsackievirus B3 (CVB3) has potential as a new oncolytic agent for the treatment of cancer but can induce severe pancreatitis. Here, we inserted target sequences of the microRNA miR-375 (miR-375TS) into the 5' terminus of the polyprotein encoding sequence or into the 3'UTR of the CVB3 strain rCVB3.1 to prevent viral replication in the pancreas. In pancreatic EndoC-ßH1 cells expressing miR-375 endogenously, replication of the 5'-miR-375TS virus and that of the 3'-miR-375TS virus was reduced by 4 × 103 -fold and 3.9 × 104 -fold, respectively, compared to the parental rCVB3.1. In colorectal carcinoma cells, replication and cytotoxicity of both viruses were slightly reduced compared to rCVB3.1, but less pronounced for the 3'-miR-375TS virus. Thus, CVB3 with miR-375TS in the 3'UTR of the viral genome may be suitable to avoid pancreatic toxicity.


Subject(s)
Enterovirus B, Human/genetics , Genetic Engineering , MicroRNAs/genetics , Pancreas/cytology , 3' Untranslated Regions/genetics , Base Sequence , Cell Line, Tumor , HEK293 Cells , Humans , Pancreas/virology
9.
Cardiovasc Res ; 116(10): 1756-1766, 2020 08 01.
Article in English | MEDLINE | ID: mdl-31598635

ABSTRACT

AIMS: The coxsackievirus B3 (CVB3) mouse myocarditis model is the standard model for investigation of virus-induced myocarditis but the pancreas, rather than the heart, is the most susceptible organ in mouse. The aim of this study was to develop a CVB3 mouse myocarditis model in which animals develop myocarditis while attenuating viral infection of the pancreas and the development of severe pancreatitis. METHODS AND RESULTS: We developed the recombinant CVB3 variant H3N-375TS by inserting target sites (TS) of miR-375, which is specifically expressed in the pancreas, into the 3'UTR of the genome of the pancreo- and cardiotropic CVB3 variant H3. In vitro evaluation showed that H3N-375TS was suppressed in pancreatic miR-375-expressing EndoC-ßH1 cells >5 log10, whereas its replication was not suppressed in isolated primary embryonic mouse cardiomyocytes. In vivo, intraperitoneal (i.p.) administration of H3N-375TS to NMRI mice did not result in pancreatic or cardiac infection. In contrast, intravenous (i.v.) administration of H3N-375TS to NMRI and Balb/C mice resulted in myocardial infection and acute and chronic myocarditis, whereas the virus was not detected in the pancreas and the pancreatic tissue was not damaged. Acute myocarditis was characterized by myocardial injury, inflammation with mononuclear cells, induction of proinflammatory cytokines, and detection of replicating H3N-375TS in the heart. Mice with chronic myocarditis showed myocardial fibrosis and persistence of H3N-375TS genomic RNA but no replicating virus in the heart. Moreover, H3N-375TS infected mice showed distinctly less suffering compared with mice that developed pancreatitis and myocarditis after i.p. or i.v application of control virus. CONCLUSION: In this study, we demonstrate that by use of the miR-375-sensitive CVB3 variant H3N-375TS, CVB3 myocarditis can be established without the animals developing severe systemic infection and pancreatitis. As the H3N-375TS myocarditis model depends on pancreas-attenuated H3N-375TS, it can easily be used in different mouse strains and for various applications.


Subject(s)
Coxsackievirus Infections/virology , Enterovirus B, Human/pathogenicity , Myocarditis/virology , Myocytes, Cardiac/virology , Pancreas/virology , Pancreatitis/virology , 3' Untranslated Regions , Animals , Coxsackievirus Infections/metabolism , Coxsackievirus Infections/pathology , Disease Models, Animal , Enterovirus B, Human/genetics , Female , Fibrosis , Genotype , HEK293 Cells , HeLa Cells , Humans , Mice, Inbred BALB C , Mice, Inbred C57BL , MicroRNAs/genetics , Myocarditis/metabolism , Myocarditis/pathology , Myocytes, Cardiac/metabolism , Myocytes, Cardiac/pathology , Pancreatitis/prevention & control , Phenotype , Virulence , Virus Replication
10.
Circ Heart Fail ; 12(11): e005250, 2019 11.
Article in English | MEDLINE | ID: mdl-31718319

ABSTRACT

BACKGROUND: Coxsackie-B-viruses (CVB) are frequent causes of acute myocarditis and dilated cardiomyopathy, but an effective antiviral therapy is still not available. Previously, we and others have demonstrated that treatment with an engineered sCAR-Fc (soluble coxsackievirus-adenovirus receptor fused to the carboxyl-terminus of human IgG) efficiently neutralizes CVB3 and inhibits the development of cardiac dysfunction in mice with acute CVB3-induced myocarditis. In this study, we analyzed the potential of sCAR-Fc for treatment of chronic CVB3-induced myocarditis in an outbred NMRI mouse model. METHODS: NMRI mice were infected with the CVB3 strain 31-1-93 and treated with a sCAR-Fc expressing adeno-associated virus 9 vector 1, 3, and 7 days after CVB3 infection. Chronic myocarditis was analyzed on day 28 after infection. RESULTS: Initial investigations showed that NMRI mice develop pronounced chronic myocarditis between day 18 and day 28 after infection with the CVB3 strain 31-1-93. Chronic cardiac infection was characterized by inflammation and fibrosis as well as persistence of viral genomes in the heart tissue and by cardiac dysfunction. Treatment of NMRI mice resulted in a distinct reduction of cardiac inflammation and fibrosis and almost complete elimination of virus RNA from the heart by day 28 after infection. Moreover, hemodynamic measurement revealed improved cardiac contractility and diastolic relaxation in treated mice compared with mice treated with a control vector (mean±SD; maximal pressure, 81.9±9.2 versus 69.4±8.6 mm Hg, P=0.02; left ventricular ejection fraction, 68.9±8.5 versus 54.2±11.5%, P=0.02; dP/dtmax, 7275.2±1674 versus 4432.6±1107 mm Hg/s, P=0.004; dP/dtmin, -4046.9±776 versus -3146.3±642 mm Hg/s, P=0.046). The therapeutic potential of sCAR-Fc is limited, however, since postponed start of sCAR-Fc treatment either 3 or 7 days after infection could not attenuate myocardial injury. CONCLUSIONS: Early therapeutic employment of sCAR-Fc, initiated at the beginning of the primary viremia, inhibits the development of chronic CVB3-induced myocarditis and improves the cardiac function to a level equivalent to that of uninfected animals.


Subject(s)
Antiviral Agents/administration & dosage , Cardiomyopathies/drug therapy , Coxsackievirus Infections/drug therapy , Enterovirus B, Human/drug effects , Immunoconjugates/administration & dosage , Immunoglobulin G/administration & dosage , Myocarditis/drug therapy , Receptors, Virus/administration & dosage , Animals , Cardiomyopathies/pathology , Cardiomyopathies/physiopathology , Cardiomyopathies/virology , Chronic Disease , Coxsackievirus Infections/pathology , Coxsackievirus Infections/physiopathology , Coxsackievirus Infections/virology , Disease Models, Animal , Enterovirus B, Human/pathogenicity , Fibrosis , Male , Mice , Myocarditis/pathology , Myocarditis/virology , Myocardium/pathology , Recombinant Fusion Proteins/adverse effects , Ventricular Function, Left , Viral Load
11.
Antiviral Res ; 136: 1-8, 2016 12.
Article in English | MEDLINE | ID: mdl-27773751

ABSTRACT

Coxsackie-B-viruses (CVB) cause a wide variety of diseases, ranging from mild syndromes to life-threatening conditions such as pancreatitis, myocarditis, meningitis and encephalitis. Especially newborns and young infants develop severe diseases and long-term sequelae may occur among survivors. Due to lack of specific antiviral therapy the current treatment of CVB infection is limited to symptomatic treatment. Here we analyzed the antiviral activity of a soluble receptor fusion protein, containing the extracellular part of the coxsackievirus and adenovirus receptor (CAR) fused to the constant domain of the human IgG - sCAR-Fc - against laboratory and clinical CVB strains. We found a high overall antiviral activity of sCAR-Fc against various prototypic laboratory strains of CVB, with an inhibition of viral replication up to 3 orders of magnitude (99.9%) at a concentration of 2.5 µg/ml. These include isolates that are not dependent on CAR for infection and isolates that are resistant against pleconaril, the currently most promising anti-CVB therapeutic. A complete inhibition was observed using higher concentration of sCAR-Fc. Further analysis of 23 clinical CVB isolates revealed overall high antiviral efficiency (up to 99.99%) of sCAR-Fc. In accordance with previous data, our results confirm the strong antiviral activity of sCAR-Fc against laboratory CVB strains and demonstrate for the first time that sCAR-Fc is also highly efficient at neutralizing clinical CVB isolates. Importantly, during the sCAR-Fc inhibition experiments, no naturally occurring resistant mutants were observed.


Subject(s)
Antiviral Agents/pharmacology , Coxsackie and Adenovirus Receptor-Like Membrane Protein/chemistry , Coxsackie and Adenovirus Receptor-Like Membrane Protein/pharmacology , Enterovirus B, Human/drug effects , Immunoglobulin G/genetics , Coxsackie and Adenovirus Receptor-Like Membrane Protein/genetics , Coxsackievirus Infections/drug therapy , Coxsackievirus Infections/virology , HeLa Cells , Humans , Immunoglobulin G/pharmacology , Receptors, IgG , Recombinant Fusion Proteins/chemistry , Recombinant Fusion Proteins/pharmacology , Solubility , Virus Replication/drug effects
12.
NMR Biomed ; 27(9): 1085-93, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25060359

ABSTRACT

Cerebrovascular abnormality is frequently accompanied by cognitive dysfunctions, such as dementia. Antibodies against the α1 -adrenoceptor (α1 -AR) can be found in patients with Alzheimer's disease with cerebrovascular disease, and have been shown to affect the larger vessels of the brain in rodents. However, the impact of α1 -AR antibodies on the cerebral vasculature remains unclear. In the present study, we established a neuroimaging method to measure the relative cerebral blood volume (rCBV) in small rodents with the ultimate goal to detect changes in blood vessel density and/or vessel size induced by α1 -AR antibodies. For this purpose, mapping of R2 * and R2 was performed using MRI at 9.4 T, before and after the injection of intravascular iron oxide particles (ferumoxytol). The change in the transverse relaxation rates (ΔR2 *, ΔR2 ) showed a significant rCBV decrease in the cerebrum, cortex and hippocampus of rats (except hippocampal ΔR2 ), which was more pronounced for ΔR2 * than for ΔR2 . Immunohistological analyses confirmed that the α1 -AR antibody induced blood vessel deficiencies. Our findings support the hypothesis that α1 -AR antibodies lead to cerebral vessel damage throughout the brain, which can be monitored by MRI-derived rCBV, a non-invasive neuroimaging method. This demonstrates the value of rCBV estimation by ferumoxytol-enhanced MRI at 9.4 T, and further underlines the significance of this antibody in brain diseases involving vasculature impairments, such as dementia.


Subject(s)
Autoantibodies/immunology , Blood Volume/immunology , Cerebrovascular Circulation/immunology , Ferrosoferric Oxide , Magnetic Resonance Angiography/methods , Receptors, Adrenergic, alpha-1/immunology , Animals , Blood Flow Velocity/immunology , Blood Volume Determination/methods , Contrast Media , Male , Microvessels/immunology , Microvessels/pathology , Rats , Rats, Wistar
SELECTION OF CITATIONS
SEARCH DETAIL
...