Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Angew Chem Int Ed Engl ; : e202409047, 2024 Jun 28.
Article in English | MEDLINE | ID: mdl-38940693

ABSTRACT

We report the design of a single RNA sequence capable of adopting one of two ribozyme folds and catalyzing the cleavage and/or ligation of the respective substrates. The RNA is able to change its conformation in response to its environment, hence it is called chameleon ribozyme (CHR). Efficient RNA cleavage of two different substrates as well as RNA ligation by CHR is demonstrated in separate experiments and in a one pot reaction. Our study shows that sequence variants of the hairpin ribozyme intersect with the hammerhead ribozyme and that rather short RNA molecules can have comprehensive conformational flexibility, which is an important feature for the emergence of new functional folds in early evolution.

2.
Adv Sci (Weinh) ; 11(24): e2309891, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38477454

ABSTRACT

Quadruplex-duplex (QD) junctions, which represent unique structural motifs of both biological and technological significance, have been shown to constitute high-affinity binding sites for various ligands. A QD hybrid construct based on a human telomeric sequence, which harbors a duplex stem-loop in place of a short lateral loop, is structurally characterized by NMR. It folds into two major species with a (3+1) hybrid and a chair-type (2+2) antiparallel quadruplex domain coexisting in a K+ buffer solution. The antiparallel species is stabilized by an unusual capping structure involving a thymine and protonated adenine base AH+ of the lateral loop facing the hairpin duplex to form a T·AH+·G·C quartet with the interfacial G·C base pair at neutral pH. Addition and binding of Phen-DC3 to the QD hybrid mixture by its partial intercalation at corresponding QD junctions leads to a topological transition with exclusive formation of the (3+1) hybrid fold. In agreement with the available experimental data, such an unprecedented discrimination of QD junctions by a ligand can be rationalized following an induced fit mechanism.


Subject(s)
G-Quadruplexes , Ligands , Humans , Telomere/chemistry , Magnetic Resonance Spectroscopy/methods , Nucleic Acid Conformation , DNA/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...