Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 302(1): 1-10, 2012 Dec 08.
Article in English | MEDLINE | ID: mdl-22835378

ABSTRACT

Cyanamide has been used for decades for medical intentions in the treatment of alcoholism and for agricultural purposes as a plant growth regulator and bud-breaking agent. Its therapeutic effect is mediated by reversible inhibition of aldehyde dehydrogenase and it was reported to be metabolized in vivo mainly via coenzyme A dependent N-acetylation by N-acetyltransferases. Although described to be a substrate for N-acetyltransferases (NATs), cyanamide has a different molecular structure to arylamines and hydrazines, the preferred substrates for N-acetyltransferases. Therefore, a more detailed investigation of its interrelations with N-acetyltransferases was performed. We analyzed the impact of cyanamide on NAT1 activities of human monocytes (monocytic THP-1 cells) using the classical substrate p-aminobenzoic acid. We found that a 24h treatment with physiologically relevant concentrations of cyanamide decreased the NAT1 activity significantly. Based on this observation we performed additional experiments using recombinant human NAT1 and NAT2 to achieve further insights. In detail a significant dose- and time-dependent inhibition of NAT1 activity was observed for 100 and 1000µM cyanamide using recombinant human NAT1*4. However, cyanamide did not inhibit recombinant NAT2*4. Experiments testing cyanamide as substrate did not provide evidence that cyanamide is metabolized via coenzyme A dependent N-acetylation in vitro by human NAT1 or NAT2, THP-1 or human liver cytosol. Therefore we can conclude that the observed enzyme inhibition (around 50% and 25% after treatment with 0.5 and 0.25mM CA, respectively) is not based on substrate-dependent down-regulation of NAT1. Further mechanistic and kinetic studies indicated that cyanamide reacts with the active site cysteine residue of NAT1, leading to its rapid inhibition (significant inhibition after 30min and 2h for 1000 and 100µM CA, respectively). Addition of the reduction agent dithiothreitol (DTT) did not modify the effect, indicating that oxidative processes that can be reversed by 5mM DTT are not likely involved in the inhibition. Taken together our results show that cyanamide is able to inhibit NAT1 most likely via interaction with the active site cysteine residue. Thereby cyanamide might modulate NAT1 dependent detoxification and activation of arylamines.


Subject(s)
4-Aminobenzoic Acid/metabolism , Arylamine N-Acetyltransferase/antagonists & inhibitors , Arylamine N-Acetyltransferase/drug effects , Cyanamide/pharmacology , Isoenzymes/antagonists & inhibitors , Acetylation , Arylamine N-Acetyltransferase/metabolism , Cell Line, Tumor , Coenzyme A/metabolism , Cyanamide/administration & dosage , Cyanamide/metabolism , Cytosol/metabolism , Dithiothreitol/pharmacology , Dose-Response Relationship, Drug , Humans , Liver/metabolism , Monocytes/drug effects , Monocytes/metabolism , Time Factors
2.
Toxicol In Vitro ; 24(3): 973-80, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20036732

ABSTRACT

Xenobiotic metabolizing enzymes like cytochrome P450s and N-acetyltransferase are expressed in keratinocytes and professional antigen-presenting cells. Thus, biotransformation of chemicals applied to the skin can be relevant for their potential to cause skin toxicity and immune responses like allergic contact dermatitis. Considering the keratinocyte cell line HaCaT as a relevant in vitro tool for epidermal biotransformation, we specifically investigated CYP1 (EROD) and N-acetyltransferase 1 (NAT1) activities of three different HaCaT shipments and human primary keratinocytes (NHEK). Solvent treated HaCaT showed EROD levels near the detection limit (0.047 pmol/mg/min), primary keratinocytes (n=4) were in a range between 0 and 0.76 pmol/mg/min. B[a]P (1 microM) induced EROD activities of 19.0+/-0.9 pmol/mg/min (n=11) in HaCaT and 5.8+/-0.5 pmol/mg/min (n=4) in NHEK. N-acetylation activities for para-aminobenzoic acid (PABA) were in average 3.4-fold higher in HaCaT compared to NHEK (8+/-0.5 nmol/mg/min) and varied between the HaCaT shipments (range 12.0-44.5 nmol/mg/min). This was in good agreement with NAT1 promoter P1 dependent mRNA level and N-acetylation of the contact allergen para-phenylenediamine (PPD) under typical cell-based assay conditions. We conclude that HaCaT represent a suitable in vitro model for studying the qualitative contribution of epidermal phase1/phase2 metabolism to toxicological endpoints such as skin sensitization.


Subject(s)
Allergens/toxicity , Arylamine N-Acetyltransferase/metabolism , Cytochrome P-450 Enzyme System/metabolism , Dermatitis, Contact/pathology , Isoenzymes/metabolism , Keratinocytes/enzymology , Toxicity Tests/methods , 4-Aminobenzoic Acid/metabolism , Acetylation , Cell Line , Cytochrome P-450 CYP1A1/metabolism , Humans , Infant, Newborn , Keratinocytes/drug effects , Keratinocytes/pathology , Phenylenediamines/metabolism , Promoter Regions, Genetic/genetics , RNA, Messenger/biosynthesis , RNA, Messenger/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...