Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Oct 30.
Article in English | MEDLINE | ID: mdl-34772065

ABSTRACT

The transmutation of minor actinides (in particular, Np and Am), which are among the main contributors to spent fuel α-radiotoxicity, was studied in the SUPERFACT irradiation. Several types of transmutation UO2-based fuels were produced, differing by their minor actinide content (241Am, 237Np, Pu), and irradiated in the Phénix fast reactor. Due to the high content in rather short-lived alpha-decaying actinides, both the archive, but also the irradiated fuels, cumulated an alpha dose during a laboratory time scale, which is comparable to that of standard LWR fuels during centuries/millenaries of storage. Transmission Electron Microscopy was performed to assess the evolution of the microstructure of the SUPERFACT archive and irradiated fuel. This was compared to conventional irradiated spent fuel (i.e., after years of storage) and to other 238Pu-doped UO2 for which the equivalent storage time would span over centuries. It could be shown that the microstructure of these fluorites does not degrade significantly from low to very high alpha-damage doses, and that helium bubbles precipitate.

2.
Inorg Chem ; 60(19): 14550-14556, 2021 Oct 04.
Article in English | MEDLINE | ID: mdl-34524816

ABSTRACT

In view of safe management of the nuclear wastes, a sound knowledge of the atomic-scale properties of U1-xMxO2+y nanoparticles is essential. In particular, their cation valences and oxygen stoichiometries are of great interest as these properties drive their diffusion and migration behaviors into the environment. Here, we present an in-depth study of U1-xCexO2+y, over the full compositional domain, by combining X-ray diffraction and high-energy resolution fluorescence detection X-ray absorption near-edge structure. We show, on one hand, the coexistence of UIV, UV, and UVI and, on the other hand, that the fluorite structure is maintained despite this charge distribution.

3.
Nanoscale ; 5(9): 3948-53, 2013 May 07.
Article in English | MEDLINE | ID: mdl-23535995

ABSTRACT

Nanocomposites made of non-woven glass fibres with diameters ranging from tens of nanometers up to several micrometers, containing silver nanoparticles, were successfully fabricated by the laser spinning technique. Pellets of a soda-lime silicate glass containing silver nanoparticles with varying concentrations (5 and 10 wt%) were used as a precursor. The process followed to obtain the silver nanofibres did not agglomerate significantly the metallic nanoparticles, and the average particle size is still lower than 50 nm. This is the first time that glass nanofibres containing silver nanoparticles have been obtained following a process different from electrospinning of a sol-gel, thus avoiding the limitations of this method and opening a new route to composite nanomaterials. Antibacterial efficiency of the nanosilver glass fibres, tested against one of the most common gram negative bacteria, was greater than 99.99% compared to the glass fibres free of silver. The silver nanoparticles are well-dispersed not only on the surface but are also embedded into the uniform nanofibres, which leads to a long lasting durable antimicrobial effect. All these novel characteristics will potentially open up a whole new range of applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...