Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Technol Adv Mater ; 25(1): 2312148, 2024.
Article in English | MEDLINE | ID: mdl-38361531

ABSTRACT

Already in 2012, Blom et al. reported (Nature Materials 2012, 11, 882) in semiconducting polymers on a general electron-trap density of ≈3 × 1017 cm-3, centered at an energy of ≈3.6 eV below vacuum. It was suggested that traps have an extrinsic origin, with the water-oxygen complex [2(H2O)-O2] as a possible candidate, based on its electron affinity. However, further evidence is lacking and the origin of universal electron traps remained elusive. Here, in polymer diodes, the temperature-dependence of reversible electron traps is investigated that develop under bias stress slowly over minutes to a density of 2 × 1017 cm-3, centered at an energy of 3.6 eV below vacuum. The trap build-up dynamics follows a 3rd-order kinetics, in line with that traps form via an encounter between three diffusing precursor particles. The accordance between universal and slowly evolving traps suggests that general electron traps in semiconducting polymers form via a triple-encounter process between oxygen and water molecules that form the suggested [2(H2O)-O2] complex as the trap origin.


Formation of universal electron traps in polymer light-emitting diodes is a dynamic process that occurs via a slow triple-encounter between trap precursor species, with the water-oxygen [2(H2O)-O2] complex as a likely candidate.

2.
ACS Appl Mater Interfaces ; 11(26): 23428-23435, 2019 Jul 03.
Article in English | MEDLINE | ID: mdl-31179678

ABSTRACT

Imaging in the near-infrared (NIR) is getting increasingly important for applications such as machine vision or medical imaging. NIR-to-visible optical upconverters consist of a monolithic stack of a NIR photodetector and a visible light-emitting unit. Such devices convert NIR light directly to visible light and allow capturing a NIR image with an ordinary camera. Here, five-layer organic solution-processed upconverters (OUCs) are reported which consist of a squaraine dye NIR photodetector and a fluorescent poly( para-phenylene vinylene) copolymer (super yellow)-based organic light-emitting diode (OLED) or light-emitting electrochemical cell (LEC), respectively. Both OLED-OUCs and LEC-OUCs convert NIR light at 980 nm to yellow light at around 575 nm with comparable device metrics of performance, such as a turn-on voltage of 2.7-2.9 V and a NIR-to-visible photon conversion efficiency of around 1.6%. Because of the presence of a salt in the emitting layer, the LEC-OUC is a temporally dynamic device. The LEC-OUC turn-on and relaxation behavior is characterized in detail. It is demonstrated that a particular ionic distribution and thereby the LEC-OUC status can be frozen by storing the device in the presence of a small voltage applied. This provides a test chart for quantitative measurements.

3.
ACS Appl Mater Interfaces ; 10(45): 39100-39106, 2018 Nov 14.
Article in English | MEDLINE | ID: mdl-30335938

ABSTRACT

The redistribution of ions in light-emitting electrochemical cells (LECs) plays a key role in their functionality. The direct quantitative mapping of ion density distributions in operating realistic sandwich-type devices, however, has not been experimentally achieved. Here we operate high-performing [Super Yellow/trimethylolpropane ethoxylate/lithium trifluoromethanesulfonate (Li+CF3SO3-)] LEC devices inside a time-of-flight secondary ion mass spectrometer and cool the devices after different operation times to liquid nitrogen temperatures before depth profiling is performed. The results reveal the dependence of the elemental and molecular distributions across the device layer on operation conditions. We find that the ion displacements lead to a substantial shift of the local chemical equilibria governing the free ion concentration.

4.
ACS Appl Mater Interfaces ; 10(13): 11063-11069, 2018 Apr 04.
Article in English | MEDLINE | ID: mdl-29527890

ABSTRACT

Efficient light detection in the near-infrared (NIR) wavelength region is central to emerging applications such as medical imaging and machine vision. An organic upconverter (OUC) consists of a NIR-sensitive organic photodetector (OPD) and an visible organic light-emitting diode (OLED), connected in series. The device converts NIR light directly to visible light, allowing imaging of a NIR scene in the visible. Here, we present an OUC composed of a NIR-selective squaraine dye-based OPD and a fluorescent OLED. The OPD has a peak sensitivity at 980 nm and an internal photon-to-current conversion efficiency of ∼100%. The OUC conversion efficiency (0.27%) of NIR to visible light is close to the expected maximum. The materials of the OUC multilayer stack absorb very little light in the visible wavelength range. In combination with an optimized semitransparent metal top electrode, this enabled the fabrication of transparent OUCs with an average visible transmittance of 65% and a peak transmittance of 80% at 620 nm. Visibly transparent OUCs are interesting for window-integrated electronic circuits or imaging systems that allow for the simultaneous detection of directly transmitted visible and NIR upconverted light.

SELECTION OF CITATIONS
SEARCH DETAIL
...