Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Neuroimage ; 226: 117286, 2021 02 01.
Article in English | MEDLINE | ID: mdl-32992003

ABSTRACT

T2*-weighted gradient-echo sequences count among the most widely used techniques in neuroimaging and offer rich magnitude and phase contrast. The susceptibility effects underlying this contrast scale with B0, making T2*-weighted imaging particularly interesting at high field. High field also benefits baseline sensitivity and thus facilitates high-resolution studies. However, enhanced susceptibility effects and high target resolution come with inherent challenges. Relying on long echo times, T2*-weighted imaging not only benefits from enhanced local susceptibility effects but also suffers from increased field fluctuations due to moving body parts and breathing. High resolution, in turn, renders neuroimaging particularly vulnerable to motion of the head. This work reports the implementation and characterization of a system that aims to jointly address these issues. It is based on the simultaneous operation of two control loops, one for field stabilization and one for motion correction. The key challenge with this approach is that the two loops both operate on the magnetic field in the imaging volume and are thus prone to mutual interference and potential instability. This issue is addressed at the levels of sensing, timing, and control parameters. Performance assessment shows the resulting system to be stable and exhibit adequate loop decoupling, precision, and bandwidth. Simultaneous field and motion control is then demonstrated in examples of T2*-weighted in vivo imaging at 7T.


Subject(s)
Artifacts , Brain/diagnostic imaging , Image Processing, Computer-Assisted/methods , Magnetic Resonance Imaging/methods , Neuroimaging/methods , Feedback , Humans , Motion
2.
NMR Biomed ; 30(10)2017 Oct.
Article in English | MEDLINE | ID: mdl-28678353

ABSTRACT

T2 * mapping offers access to a number of important structural and physiological tissue parameters. It is robust against RF field variations and overall signal scaling. However, T2 * measurement is highly sensitive to magnetic field errors, including perturbations caused by breathing motion at high baseline field. The goal of this work is to assess this issue in T2 * mapping of the brain and to study the benefit of field stabilization by feedback field control. T2 * quantification in the brain was investigated by phantom and in vivo measurements at 7 T. Repeated measurements were made with and without feedback field control using NMR field sensing and dynamic third-order shim actuation. The precision and reliability of T2 * quantification was assessed by studying variation across repeated measurements as well as fitting errors. Breathing effects were found to introduce significant error in T2 * mapping results. Field control mitigates this problem substantially. In a phantom it virtually eliminates the effects of emulated breathing fluctuations in the head. In vivo it enhances the structural fidelity of T2 * maps and reduces fitting residuals along with standard deviation. In conclusion, feedback field control improves the fidelity of T2 * mapping in the presence of field perturbations. It is an effective means of countering bulk susceptibility effects of breathing and hence holds particular promise for efforts to leverage high field for T2 * studies in vivo.


Subject(s)
Feedback , Magnetic Resonance Imaging/methods , Adult , Humans , Male , Phantoms, Imaging
SELECTION OF CITATIONS
SEARCH DETAIL
...