Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Cell Environ ; 45(4): 1315-1332, 2022 04.
Article in English | MEDLINE | ID: mdl-35064681

ABSTRACT

The dynamic behaviour of seeds in soil seed banks depends on their ability to act as sophisticated environmental sensors to adjust their sensitivity thresholds for germination by dormancy mechanisms. Here we show that prolonged incubation of sugar beet fruits at low temperature (chilling at 5°C, generally known to release seed dormancy of many species) can induce secondary nondeep physiological dormancy of an apparently nondormant crop species. The physiological and biophysical mechanisms underpinning this cold-induced secondary dormancy include the chilling-induced accumulation of abscisic acid in the seeds, a reduction in the embryo growth potential and a block in weakening of the endosperm covering the embryonic root. Transcriptome analysis revealed distinct gene expression patterns in the different temperature regimes and upon secondary dormancy induction and maintenance. The chilling caused reduced expression of cell wall remodelling protein genes required for embryo cell elongation growth and endosperm weakening, as well as increased expression of seed maturation genes, such as for late embryogenesis abundant proteins. A model integrating the hormonal signalling and master regulator expression with the temperature-control of seed dormancy and maturation programmes is proposed. The revealed mechanisms of the cold-induced secondary dormancy are important for climate-smart agriculture and food security.


Subject(s)
Beta vulgaris , Abscisic Acid/metabolism , Beta vulgaris/genetics , Germination/physiology , Plant Dormancy/genetics , Seeds/physiology
2.
Plant Cell ; 30(2): 495-509, 2018 02.
Article in English | MEDLINE | ID: mdl-29348240

ABSTRACT

Sustaining energy homeostasis is of pivotal importance for all living organisms. In Arabidopsis thaliana, evolutionarily conserved SnRK1 kinases (Snf1-RELATED KINASE1) control metabolic adaptation during low energy stress. To unravel starvation-induced transcriptional mechanisms, we performed transcriptome studies of inducible knockdown lines and found that S1-basic leucine zipper transcription factors (S1-bZIPs) control a defined subset of genes downstream of SnRK1. For example, S1-bZIPs coordinate the expression of genes involved in branched-chain amino acid catabolism, which constitutes an alternative mitochondrial respiratory pathway that is crucial for plant survival during starvation. Molecular analyses defined S1-bZIPs as SnRK1-dependent regulators that directly control transcription via binding to G-box promoter elements. Moreover, SnRK1 triggers phosphorylation of group C-bZIPs and the formation of C/S1-heterodimers and, thus, the recruitment of SnRK1 directly to target promoters. Subsequently, the C/S1-bZIP-SnRK1 complex interacts with the histone acetylation machinery to remodel chromatin and facilitate transcription. Taken together, this work reveals molecular mechanisms underlying how energy deprivation is transduced to reprogram gene expression, leading to metabolic adaptation upon stress.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Metabolic Networks and Pathways , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Adaptation, Physiological , Arabidopsis/enzymology , Arabidopsis/physiology , Arabidopsis/radiation effects , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Darkness , Energy Metabolism , Gene Expression Profiling , Homeostasis , Mitochondria/metabolism , Phosphorylation , Promoter Regions, Genetic/genetics , Protein Serine-Threonine Kinases/genetics
3.
Elife ; 42015 Aug 11.
Article in English | MEDLINE | ID: mdl-26263501

ABSTRACT

Metabolic adjustment to changing environmental conditions, particularly balancing of growth and defense responses, is crucial for all organisms to survive. The evolutionary conserved AMPK/Snf1/SnRK1 kinases are well-known metabolic master regulators in the low-energy response in animals, yeast and plants. They act at two different levels: by modulating the activity of key metabolic enzymes, and by massive transcriptional reprogramming. While the first part is well established, the latter function is only partially understood in animals and not at all in plants. Here we identified the Arabidopsis transcription factor bZIP63 as key regulator of the starvation response and direct target of the SnRK1 kinase. Phosphorylation of bZIP63 by SnRK1 changed its dimerization preference, thereby affecting target gene expression and ultimately primary metabolism. A bzip63 knock-out mutant exhibited starvation-related phenotypes, which could be functionally complemented by wild type bZIP63, but not by a version harboring point mutations in the identified SnRK1 target sites.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Gene Expression Regulation, Plant , Protein Multimerization , Protein Serine-Threonine Kinases/metabolism , Adaptation, Physiological , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/deficiency , Gene Knockout Techniques , Genetic Complementation Test , Phosphorylation , Protein Processing, Post-Translational
4.
Plant Cell ; 27(8): 2244-60, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26276836

ABSTRACT

Soil salinity increasingly causes crop losses worldwide. Although roots are the primary targets of salt stress, the signaling networks that facilitate metabolic reprogramming to induce stress tolerance are less understood than those in leaves. Here, a combination of transcriptomic and metabolic approaches was performed in salt-treated Arabidopsis thaliana roots, which revealed that the group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 reprogram primary C- and N-metabolism. In particular, gluconeogenesis and amino acid catabolism are affected by these transcription factors. Importantly, bZIP1 expression reflects cellular stress and energy status in roots. In addition to the well-described abiotic stress response pathway initiated by the hormone abscisic acid (ABA) and executed by SnRK2 (Snf1-RELATED-PROTEIN-KINASE2) and AREB-like bZIP factors, we identify a structurally related ABA-independent signaling module consisting of SnRK1s and S1 bZIPs. Crosstalk between these signaling pathways recruits particular bZIP factor combinations to establish at least four distinct gene expression patterns. Understanding this signaling network provides a framework for securing future crop productivity.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Signal Transduction/genetics , Abscisic Acid/pharmacology , Amino Acids/metabolism , Arabidopsis/drug effects , Arabidopsis/metabolism , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/metabolism , Calcium/metabolism , Carbohydrate Metabolism/drug effects , Carbohydrate Metabolism/genetics , Gene Expression Regulation, Plant/drug effects , Gluconeogenesis/drug effects , Gluconeogenesis/genetics , Immunoblotting , Mutation , Plant Growth Regulators/pharmacology , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Promoter Regions, Genetic/genetics , Protein Binding/drug effects , Protein Serine-Threonine Kinases , Reverse Transcriptase Polymerase Chain Reaction , Salt-Tolerant Plants/drug effects , Salt-Tolerant Plants/genetics , Salt-Tolerant Plants/metabolism , Signal Transduction/drug effects , Sodium Chloride/pharmacology , Transcriptome/drug effects , Transcriptome/genetics
5.
Plant Cell ; 23(1): 381-95, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21278122

ABSTRACT

Control of energy homeostasis is crucial for plant survival, particularly under biotic or abiotic stress conditions. Energy deprivation induces dramatic reprogramming of transcription, facilitating metabolic adjustment. An in-depth knowledge of the corresponding regulatory networks would provide opportunities for the development of biotechnological strategies. Low energy stress activates the Arabidopsis thaliana group S1 basic leucine zipper transcription factors bZIP1 and bZIP53 by transcriptional and posttranscriptional mechanisms. Gain-of-function approaches define these bZIPs as crucial transcriptional regulators in Pro, Asn, and branched-chain amino acid metabolism. Whereas chromatin immunoprecipitation analyses confirm the direct binding of bZIP1 and bZIP53 to promoters of key metabolic genes, such as ASPARAGINE SYNTHETASE1 and PROLINE DEHYDROGENASE, the G-box, C-box, or ACT motifs (ACTCAT) have been defined as regulatory cis-elements in the starvation response. bZIP1 and bZIP53 were shown to specifically heterodimerize with group C bZIPs. Although single loss-of-function mutants did not affect starvation-induced transcription, quadruple mutants of group S1 and C bZIPs displayed a significant impairment. We therefore propose that bZIP1 and bZIP53 transduce low energy signals by heterodimerization with members of the partially redundant C/S1 bZIP factor network to reprogram primary metabolism in the starvation response.


Subject(s)
Amino Acids/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Darkness , Gene Expression Regulation, Plant , Mutation , Plants, Genetically Modified/genetics , Plants, Genetically Modified/growth & development , Plants, Genetically Modified/metabolism , Promoter Regions, Genetic , Protein Multimerization , Protoplasts/metabolism , Signal Transduction , Stress, Physiological , Transcription, Genetic
6.
Plant Cell ; 21(6): 1747-61, 2009 Jun.
Article in English | MEDLINE | ID: mdl-19531597

ABSTRACT

Transcription of Arabidopsis thaliana seed maturation (MAT) genes is controlled by members of several transcription factor families, such as basic leucine zippers (bZIPs), B3s, MYBs, and DOFs. In this work, we identify Arabidopsis bZIP53 as a novel transcriptional regulator of MAT genes. bZIP53 expression in developing seeds precedes and overlaps that of its target genes. Gain- and loss-of-function approaches indicate a correlation between the amount of bZIP53 protein and MAT gene expression. Specific in vivo and in vitro binding of bZIP53 protein to a G-box element in the albumin 2S2 promoter is demonstrated. Importantly, heterodimerization with bZIP10 or bZIP25, previously described bZIP regulators of MAT gene expression, significantly enhances DNA binding activity and produces a synergistic increase in target gene activation. Full-level target gene activation is strongly correlated with the ratio of the correspondent bZIP heterodimerization partners. Whereas bZIP53 does not interact with ABI3, a crucial transcriptional regulator in Arabidopsis seeds, ternary complex formation between the bZIP heterodimers and ABI3 increases the expression of MAT genes in planta. We therefore propose that heterodimers containing bZIP53 participate in enhanceosome formation to produce a dramatic increase in MAT gene transcription.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/physiology , Gene Expression Regulation, Plant , Seeds/genetics , 2S Albumins, Plant/genetics , 2S Albumins, Plant/metabolism , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Basic-Leucine Zipper Transcription Factors/genetics , Basic-Leucine Zipper Transcription Factors/metabolism , Binding Sites , Consensus Sequence , Dimerization , Promoter Regions, Genetic , Protein Interaction Mapping , Seeds/growth & development , Seeds/metabolism
7.
Plant Mol Biol ; 69(1-2): 107-19, 2009 Jan.
Article in English | MEDLINE | ID: mdl-18841482

ABSTRACT

Members of the Arabidopsis group C/S1 basic leucine zipper (bZIP) transcription factor (TF) network are proposed to implement transcriptional reprogramming of plant growth in response to energy deprivation and environmental stresses. The four group C and five group S1 members form specific heterodimers and are, therefore, considered to cooperate functionally. For example, the interplay of C/S1 bZIP TFs in regulating seed maturation genes was analyzed by expression studies and target gene regulation in both protoplasts and transgenic plants. The abundance of the heterodimerization partners significantly affects target gene transcription. Therefore, a detailed analysis of the developmental and stress related expression patterns was performed by comparing promoter: GUS and transcription data. The idea that the C/S1 network plays a role in the allocation of nutrients is supported by the defined and partially overlapping expression patterns in sink leaves, seeds and anthers. Accordingly, metabolic signals strongly affect bZIP expression on the transcriptional and/or post-transcriptional level. Sucrose induced repression of translation (SIRT) was demonstrated for all group S1 bZIPs. In particular, transcription of group S1 genes strongly responds to various abiotic stresses, such as salt (AtbZIP1) or cold (AtbZIP44). In summary, heterodimerization and expression data provide a basic framework to further determine the functional impact of the C/S1 network in regulating the plant energy balance and nutrient allocation.


Subject(s)
Arabidopsis/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Gene Expression Regulation, Plant , Stress, Physiological , Dimerization
8.
EMBO J ; 25(13): 3133-43, 2006 Jul 12.
Article in English | MEDLINE | ID: mdl-16810321

ABSTRACT

Proline metabolism has been implicated in plant responses to abiotic stresses. The Arabidopsis thaliana proline dehydrogenase (ProDH) is catalysing the first step in proline degradation. Transcriptional activation of ProDH by hypo-osmolarity is mediated by an ACTCAT cis element, a typical binding site of basic leucine zipper (bZIP) transcription factors. In this study, we demonstrate by gain-of-function and loss-of-function approaches, as well as chromatin immunoprecipitation (ChIP), that ProDH is a direct target gene of the group-S bZIP factor AtbZIP53. Dimerisation studies making use of yeast and Arabidopsis protoplast-based two-hybrid systems, as well as bimolecular fluorescence complementation (BiFC) reveal that AtbZIP53 does not preferentially form dimers with group-S bZIPs but strongly interacts with members of group-C. In particular, a synergistic interplay of AtbZIP53 and group-C AtbZIP10 was demonstrated by colocalisation studies, strong enhancement of ACTCAT-mediated transcription as well as complementation studies in atbzip53 atbzip10 T-DNA insertion lines. Heterodimer mediated activation of transcription has been found to operate independent of the DNA-binding properties and is described as a crucial mechanism to modulate transcription factor activity and function.


Subject(s)
Arabidopsis Proteins/physiology , Arabidopsis/metabolism , Basic-Leucine Zipper Transcription Factors/physiology , Proline Oxidase/physiology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Basic-Leucine Zipper Transcription Factors/genetics , Dimerization , Gene Expression Regulation, Plant , Mutation , Osmolar Concentration , Proline Oxidase/genetics , Promoter Regions, Genetic , Regulatory Elements, Transcriptional , Transcriptional Activation , Yeasts/genetics , Yeasts/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...