Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
bioRxiv ; 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36993570

ABSTRACT

The peripheral nervous system (PNS) is essential for proper body function. A high percentage of the population suffer nerve degeneration or peripheral damage. For example, over 40% of patients with diabetes or undergoing chemotherapy develop peripheral neuropathies. Despite this, there are major gaps in the knowledge of human PNS development and therefore, there are no available treatments. Familial Dysautonomia (FD) is a devastating disorder that specifically affects the PNS making it an ideal model to study PNS dysfunction. FD is caused by a homozygous point mutation in ELP1 leading to developmental and degenerative defects in the sensory and autonomic lineages. We previously employed human pluripotent stem cells (hPSCs) to show that peripheral sensory neurons (SNs) are not generated efficiently and degenerate over time in FD. Here, we conducted a chemical screen to identify compounds able to rescue this SN differentiation inefficiency. We identified that genipin, a compound prescribed in Traditional Chinese Medicine for neurodegenerative disorders, restores neural crest and SN development in FD, both in the hPSC model and in a FD mouse model. Additionally, genipin prevented FD neuronal degeneration, suggesting that it could be offered to patients suffering from PNS neurodegenerative disorders. We found that genipin crosslinks the extracellular matrix, increases the stiffness of the ECM, reorganizes the actin cytoskeleton, and promotes transcription of YAP-dependent genes. Finally, we show that genipin enhances axon regeneration in an in vitro axotomy model in healthy sensory and sympathetic neurons (part of the PNS) and in prefrontal cortical neurons (part of the central nervous system, CNS). Our results suggest genipin can be used as a promising drug candidate for treatment of neurodevelopmental and neurodegenerative diseases, and as a enhancer of neuronal regeneration.

3.
Neurobiol Dis ; 162: 105581, 2022 01.
Article in English | MEDLINE | ID: mdl-34871739

ABSTRACT

Mitochondria dysfunction occurs in the aging brain as well as in several neurodegenerative disorders and predisposes neuronal cells to enhanced sensitivity to neurotoxins. 3-nitropropionic acid (3-NP) is a naturally occurring plant and fungal neurotoxin that causes neurodegeneration predominantly in the striatum by irreversibly inhibiting the tricarboxylic acid respiratory chain enzyme, succinate dehydrogenase (SDH), the main constituent of the mitochondria respiratory chain complex II. Significantly, although 3-NP-induced inhibition of SDH occurs in all brain regions, neurodegeneration occurs primarily and almost exclusively in the striatum for reasons still not understood. In rodents, 3-NP-induced striatal neurodegeneration depends on the strain background suggesting that genetic differences among genotypes modulate toxicant variability and mechanisms that underlie 3-NP-induced neuronal cell death. Using the large BXD family of recombinant inbred (RI) strains we demonstrate that variants in Ccnd1 - the gene encoding cyclin D1 - of the DBA/2 J parent underlie the resistance to 3-NP-induced striatal neurodegeneration. In contrast, the Ccnd1 variant inherited from the widely used C57BL/6 J parental strain confers sensitivity. Given that cellular stress triggers induction of cyclin D1 expression followed by cell-cycle re-entry and consequent neuronal cell death, we sought to determine if the C57BL/6 J and DBA/2 J Ccnd1 variants are differentially modulated in response to 3-NP. We confirm that 3-NP induces cyclin D1 expression in striatal neuronal cells of C57BL/6 J, but this response is blunted in the DBA/2 J. We further show that striatal-specific alternative processing of a highly conserved 3'UTR negative regulatory region of Ccnd1 co-segregates with the C57BL/6 J parental Ccnd1 allele in BXD strains and that its differential processing accounts for sensitivity or resistance to 3-NP. Our results indicate that naturally occurring Ccnd1 variants may play a role in the variability observed in neurodegenerative disorders involving mitochondria complex II dysfunction and point to cyclin D1 as a possible therapeutic target.


Subject(s)
Cyclin D1 , Propionates , Corpus Striatum/metabolism , Cyclin D1/genetics , Cyclin D1/metabolism , Nitro Compounds/metabolism , Nitro Compounds/toxicity , Propionates/metabolism , Propionates/toxicity
4.
Hum Mol Genet ; 31(11): 1776-1787, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34908112

ABSTRACT

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease caused by a splicing mutation in the gene encoding Elongator complex protein 1 (ELP1, also known as IKBKAP). This mutation results in tissue-specific skipping of exon 20 with a corresponding reduction of ELP1 protein, predominantly in the central and peripheral nervous system. Although FD patients have a complex neurological phenotype caused by continuous depletion of sensory and autonomic neurons, progressive visual decline leading to blindness is one of the most problematic aspects of the disease, as it severely affects their quality of life. To better understand the disease mechanism as well as to test the in vivo efficacy of targeted therapies for FD, we have recently generated a novel phenotypic mouse model, TgFD9; IkbkapΔ20/flox. This mouse exhibits most of the clinical features of the disease and accurately recapitulates the tissue-specific splicing defect observed in FD patients. Driven by the dire need to develop therapies targeting retinal degeneration in FD, herein, we comprehensively characterized the progression of the retinal phenotype in this mouse, and we demonstrated that it is possible to correct ELP1 splicing defect in the retina using the splicing modulator compound (SMC) BPN-15477.


Subject(s)
Dysautonomia, Familial , Intracellular Signaling Peptides and Proteins , Neurodegenerative Diseases , Optic Nerve Diseases , Retinal Ganglion Cells , Animals , Disease Models, Animal , Dysautonomia, Familial/pathology , Humans , Mice , Neurodegenerative Diseases/pathology , Optic Nerve Diseases/pathology , Retinal Ganglion Cells/pathology
6.
Nat Commun ; 12(1): 5878, 2021 10 07.
Article in English | MEDLINE | ID: mdl-34620845

ABSTRACT

Microtubule (MT)-based transport is an evolutionary conserved process finely tuned by posttranslational modifications. Among them, α-tubulin acetylation, primarily catalyzed by a vesicular pool of α-tubulin N-acetyltransferase 1 (Atat1), promotes the recruitment and processivity of molecular motors along MT tracks. However, the mechanism that controls Atat1 activity remains poorly understood. Here, we show that ATP-citrate lyase (Acly) is enriched in vesicles and provide Acetyl-Coenzyme-A (Acetyl-CoA) to Atat1. In addition, we showed that Acly expression is reduced upon loss of Elongator activity, further connecting Elongator to Atat1 in a pathway regulating α-tubulin acetylation and MT-dependent transport in projection neurons, across species. Remarkably, comparable defects occur in fibroblasts from Familial Dysautonomia (FD) patients bearing an autosomal recessive mutation in the gene coding for the Elongator subunit ELP1. Our data may thus shine light on the pathophysiological mechanisms underlying FD.


Subject(s)
ATP Citrate (pro-S)-Lyase/metabolism , Axonal Transport/physiology , ATP Citrate (pro-S)-Lyase/genetics , Acetyl Coenzyme A/metabolism , Acetylation , Acetyltransferases/genetics , Animals , Axonal Transport/genetics , Drosophila melanogaster , Dysautonomia, Familial/metabolism , Female , Fibroblasts/metabolism , Humans , Larva , Male , Mice , Microtubules/metabolism , Protein Processing, Post-Translational , Tubulin/metabolism
7.
Am J Hum Genet ; 104(4): 638-650, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30905397

ABSTRACT

Familial dysautonomia (FD) is a recessive neurodegenerative disease caused by a splice mutation in Elongator complex protein 1 (ELP1, also known as IKBKAP); this mutation leads to variable skipping of exon 20 and to a drastic reduction of ELP1 in the nervous system. Clinically, many of the debilitating aspects of the disease are related to a progressive loss of proprioception; this loss leads to severe gait ataxia, spinal deformities, and respiratory insufficiency due to neuromuscular incoordination. There is currently no effective treatment for FD, and the disease is ultimately fatal. The development of a drug that targets the underlying molecular defect provides hope that the drastic peripheral neurodegeneration characteristic of FD can be halted. We demonstrate herein that the FD mouse TgFD9;IkbkapΔ20/flox recapitulates the proprioceptive impairment observed in individuals with FD, and we provide the in vivo evidence that postnatal correction, promoted by the small molecule kinetin, of the mutant ELP1 splicing can rescue neurological phenotypes in FD. Daily administration of kinetin starting at birth improves sensory-motor coordination and prevents the onset of spinal abnormalities by stopping the loss of proprioceptive neurons. These phenotypic improvements correlate with increased amounts of full-length ELP1 mRNA and protein in multiple tissues, including in the peripheral nervous system (PNS). Our results show that postnatal correction of the underlying ELP1 splicing defect can rescue devastating disease phenotypes and is therefore a viable therapeutic approach for persons with FD.


Subject(s)
Dysautonomia, Familial/therapy , Kinetin/therapeutic use , Proprioception , RNA Splicing , Transcriptional Elongation Factors/genetics , Alleles , Animals , Behavior, Animal , Cell Line , Crosses, Genetic , Disease Models, Animal , Dysautonomia, Familial/genetics , Exons , Fibroblasts , Genotype , Humans , Introns , Kinetin/genetics , Male , Mice , Mice, Inbred C57BL , Mutation , Neurons/metabolism , Phenotype
8.
Sci Adv ; 5(12): eaax2705, 2019 12.
Article in English | MEDLINE | ID: mdl-31897425

ABSTRACT

Microtubules are polymerized dimers of α- and ß-tubulin that underlie a broad range of cellular activities. Acetylation of α-tubulin by the acetyltransferase ATAT1 modulates microtubule dynamics and functions in neurons. However, it remains unclear how this enzyme acetylates microtubules over long distances in axons. Here, we show that loss of ATAT1 impairs axonal transport in neurons in vivo, and cell-free motility assays confirm a requirement of α-tubulin acetylation for proper bidirectional vesicular transport. Moreover, we demonstrate that the main cellular pool of ATAT1 is transported at the cytosolic side of neuronal vesicles that are moving along axons. Together, our data suggest that axonal transport of ATAT1-enriched vesicles is the predominant driver of α-tubulin acetylation in axons.


Subject(s)
Acetyltransferases/metabolism , Axonal Transport/physiology , Microtubule Proteins/metabolism , Microtubules/metabolism , Acetylation , Acetyltransferases/genetics , Animals , Drosophila melanogaster/metabolism , Female , HEK293 Cells , HeLa Cells , Humans , Induced Pluripotent Stem Cells/metabolism , Larva/physiology , Locomotion , Male , Mice , Mice, Knockout , Microtubule Proteins/genetics , Neurons/metabolism , Tubulin/metabolism
9.
FASEB J ; : fj201800351R, 2018 Jun 18.
Article in English | MEDLINE | ID: mdl-29912589

ABSTRACT

Pathogenesis of alcohol-related diseases such as alcoholic hepatitis involves gut barrier dysfunction, endotoxemia, and toxin-mediated cellular injury. Here we show that Lactobacillus plantarum not only blocks but also mitigates ethanol (EtOH)-induced gut and liver damage in mice. L. plantarum blocks EtOH-induced protein thiol oxidation, and down-regulation of antioxidant gene expression in colon L. plantarum also blocks EtOH-induced expression of TNF-α, IL-1ß, IL-6, monocyte chemotactic protein 1 ( MCP1), C-X-C motif chemokine ligand ( CXCL)1, and CXCL2 genes in colon. Epidermal growth factor receptor (EGFR) signaling mediates the L. plantarum-mediated protection of tight junctions (TJs) and barrier function from acetaldehyde, the EtOH metabolite, in Caco-2 cell monolayers. In mice, doxycycline-mediated expression of dominant negative EGFR blocks L. plantarum-mediated prevention of EtOH-induced TJ disruption, mucosal barrier dysfunction, oxidative stress, and inflammatory response in colon. L. plantarum blocks EtOH-induced endotoxemia as well as EtOH-induced pathologic lesions, triglyceride deposition, oxidative stress, and inflammatory responses in the liver by an EGFR-dependent mechanism. L. plantarum treatment after injury accelerated recovery from EtOH-induced TJ, barrier dysfunction, oxidative stress, and inflammatory response in colon, endotoxemia, and liver damage. Results demonstrate that L. plantarum has both preventive and therapeutic values in treatment of alcohol-induced tissue injury, particularly in alcoholic hepatitis.-Shukla, P. K., Meena, A. S., Manda, B., Gomes-Solecki, M., Dietrich, P., Dragatsis, I., Rao, R. Lactobacillus plantarum prevents and mitigates alcohol-induced disruption of colonic epithelial tight junctions, endotoxemia, and liver damage by an EGF receptor-dependent mechanism.

10.
PLoS Genet ; 13(7): e1006846, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28715425

ABSTRACT

Huntington's Disease (HD) is an autosomal dominant progressive neurodegenerative disorder characterized by cognitive, behavioral and motor dysfunctions. HD is caused by a CAG repeat expansion in exon 1 of the HD gene that is translated into an expanded polyglutamine tract in the encoded protein, huntingtin (HTT). While the most significant neuropathology of HD occurs in the striatum, other brain regions are also affected and play an important role in HD pathology. To date there is no cure for HD, and recently strategies aiming at silencing HTT expression have been initiated as possible therapeutics for HD. However, the essential functions of HTT in the adult brain are currently unknown and hence the consequence of sustained suppression of HTT expression is unpredictable and can potentially be deleterious. Using the Cre-loxP system of recombination, we conditionally inactivated the mouse HD gene homologue at 3, 6 and 9 months of age. Here we show that elimination of Htt expression in the adult mouse results in behavioral deficits, progressive neuropathological changes including bilateral thalamic calcification, and altered brain iron homeostasis.


Subject(s)
Brain/physiopathology , Calcinosis/genetics , Huntingtin Protein/genetics , Huntington Disease/genetics , Iron/metabolism , Animals , Behavior, Animal , Brain/metabolism , Brain Diseases/genetics , Brain Diseases/pathology , Calcinosis/diagnosis , Calcinosis/pathology , Disease Models, Animal , Exons , Female , Gene Expression Regulation , Genotyping Techniques , Gliosis/diagnosis , Gliosis/genetics , Homeostasis , Huntingtin Protein/metabolism , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , RNA, Ribosomal, 18S/genetics
11.
Genet Mol Biol ; 39(4): 497-514, 2016.
Article in English | MEDLINE | ID: mdl-27561110

ABSTRACT

Hereditary Sensory and Autonomic Neuropathies (HSANs) compose a heterogeneous group of genetic disorders characterized by sensory and autonomic dysfunctions. Familial Dysautonomia (FD), also known as HSAN III, is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population. The major features of the disease are already present at birth and are attributed to abnormal development and progressive degeneration of the sensory and autonomic nervous systems. Despite clinical interventions, the disease is inevitably fatal. FD is caused by a point mutation in intron 20 of the IKBKAP gene that results in severe reduction in expression of IKAP, its encoded protein. In vitro and in vivo studies have shown that IKAP is involved in multiple intracellular processes, and suggest that failed target innervation and/or impaired neurotrophic retrograde transport are the primary causes of neuronal cell death in FD. However, FD is far more complex, and appears to affect several other organs and systems in addition to the peripheral nervous system. With the recent generation of mouse models that recapitulate the molecular and pathological features of the disease, it is now possible to further investigate the mechanisms underlying different aspects of the disorder, and to test novel therapeutic strategies.

12.
Hum Mol Genet ; 25(6): 1116-28, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26769677

ABSTRACT

Familial dysautonomia (FD) is an autosomal recessive neurodegenerative disease that affects the development and survival of sensory and autonomic neurons. FD is caused by an mRNA splicing mutation in intron 20 of the IKBKAP gene that results in a tissue-specific skipping of exon 20 and a corresponding reduction of the inhibitor of kappaB kinase complex-associated protein (IKAP), also known as Elongator complex protein 1. To date, several promising therapeutic candidates for FD have been identified that target the underlying mRNA splicing defect, and increase functional IKAP protein. Despite these remarkable advances in drug discovery for FD, we lacked a phenotypic mouse model in which we could manipulate IKBKAP mRNA splicing to evaluate potential efficacy. We have, therefore, engineered a new mouse model that, for the first time, will permit to evaluate the phenotypic effects of splicing modulators and provide a crucial platform for preclinical testing of new therapies. This new mouse model, TgFD9; Ikbkap(Δ20/flox) was created by introducing the complete human IKBKAP transgene with the major FD splice mutation (TgFD9) into a mouse that expresses extremely low levels of endogenous Ikbkap (Ikbkap(Δ20/flox)). The TgFD9; Ikbkap(Δ20/flox) mouse recapitulates many phenotypic features of the human disease, including reduced growth rate, reduced number of fungiform papillae, spinal abnormalities, and sensory and sympathetic impairments, and recreates the same tissue-specific mis-splicing defect seen in FD patients. This is the first mouse model that can be used to evaluate in vivo the therapeutic effect of increasing IKAP levels by correcting the underlying FD splicing defect.


Subject(s)
Disease Models, Animal , Dysautonomia, Familial/metabolism , Dysautonomia, Familial/pathology , Alternative Splicing , Animals , Autonomic Pathways/metabolism , Carrier Proteins/genetics , Carrier Proteins/metabolism , Dysautonomia, Familial/genetics , Exons , Humans , Intracellular Signaling Peptides and Proteins , Introns , Male , Mice , Mice, Transgenic , Mutation , Neurons/metabolism , RNA Splicing/genetics , RNA, Messenger/metabolism , Sensory Receptor Cells/metabolism
13.
Biochim Biophys Acta ; 1860(4): 765-74, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26721332

ABSTRACT

BACKGROUND: Disruption of epithelial tight junctions (TJ), gut barrier dysfunction and endotoxemia play crucial role in the pathogenesis of alcoholic tissue injury. Occludin, a transmembrane protein of TJ, is depleted in colon by alcohol. However, it is unknown whether occludin depletion influences alcoholic gut and liver injury. METHODS: Wild type (WT) and occludin deficient (Ocln(-/-)) mice were fed 1-6% ethanol in Lieber-DeCarli diet. Gut permeability was measured by vascular-to-luminal flux of FITC-inulin. Junctional integrity was analyzed by confocal microscopy. Liver injury was assessed by plasma transaminase, histopathology and triglyceride analyses. The effect of occludin depletion on acetaldehyde-induced TJ disruption was confirmed in Caco-2 cell monolayers. RESULTS: Ethanol feeding significantly reduced body weight gain in Ocln(-/-) mice. Ethanol increased inulin permeability in colon of both WT and Ocln(-/-) mice, but the effect was 4-fold higher in Ocln(-/-) mice. The gross morphology of colonic mucosa was unaltered, but ethanol disrupted the actin cytoskeleton, induced redistribution of occludin, ZO-1, E-cadherin and ß-catenin from the junctions and elevated TLR4, which was more severe in Ocln(-/-) mice. Occludin knockdown significantly enhanced acetaldehyde-induced TJ disruption and barrier dysfunction in Caco-2 cell monolayers. Ethanol significantly increased liver weight and plasma transaminase activity in Ocln(-/-) mice, but not in WT mice. Histological analysis indicated more severe lesions and fat deposition in the liver of ethanol-fed Ocln(-/-) mice. Ethanol-induced elevation of liver triglyceride was also higher in Ocln(-/-) mice. CONCLUSION: This study indicates that occludin deficiency increases susceptibility to ethanol-induced colonic mucosal barrier dysfunction and liver damage in mice.


Subject(s)
Colon/metabolism , Ethanol/adverse effects , Intestinal Mucosa/metabolism , Liver Diseases/metabolism , Occludin/deficiency , Tight Junctions/metabolism , Animals , Caco-2 Cells , Colon/pathology , Ethanol/pharmacology , Humans , Intestinal Mucosa/pathology , Inulin/pharmacokinetics , Inulin/pharmacology , Liver/metabolism , Liver/pathology , Liver Diseases/genetics , Liver Diseases/pathology , Mice , Mice, Knockout , Occludin/metabolism , Permeability/drug effects , Tight Junctions/genetics , Triglycerides/genetics , Triglycerides/metabolism
14.
Alcohol Clin Exp Res ; 39(8): 1465-75, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26173414

ABSTRACT

BACKGROUND: Acetaldehyde, the toxic ethanol (EtOH) metabolite, disrupts intestinal epithelial barrier function. Aldehyde dehydrogenase (ALDH) detoxifies acetaldehyde into acetate. Subpopulations of Asians and Native Americans show polymorphism with loss-of-function mutations in ALDH2. We evaluated the effect of ALDH2 deficiency on EtOH-induced disruption of intestinal epithelial tight junctions and adherens junctions, gut barrier dysfunction, and liver injury. METHODS: Wild-type and ALDH2-deficient mice were fed EtOH (1 to 6%) in Lieber-DeCarli diet for 4 weeks. Gut permeability in vivo was measured by plasma-to-luminal flux of FITC-inulin, tight junction and adherens junction integrity was analyzed by confocal microscopy, and liver injury was assessed by the analysis of plasma transaminase activity, histopathology, and liver triglyceride. RESULTS: EtOH feeding elevated colonic mucosal acetaldehyde, which was significantly greater in ALDH2-deficient mice. ALDH2(-/-) mice showed a drastic reduction in the EtOH diet intake. Therefore, this study was continued only in wild-type and ALDH2(+/-) mice. EtOH feeding elevated mucosal inulin permeability in distal colon, but not in proximal colon, ileum, or jejunum of wild-type mice. In ALDH2(+/-) mice, EtOH-induced inulin permeability in distal colon was not only higher than that in wild-type mice, but inulin permeability was also elevated in the proximal colon, ileum, and jejunum. Greater inulin permeability in distal colon of ALDH2(+/-) mice was associated with a more severe redistribution of tight junction and adherens junction proteins from the intercellular junctions. In ALDH2(+/-) mice, but not in wild-type mice, EtOH feeding caused a loss of junctional distribution of tight junction and adherens junction proteins in the ileum. Histopathology, plasma transaminases, and liver triglyceride analyses showed that EtOH-induced liver damage was significantly greater in ALDH2(+/-) mice compared to wild-type mice. CONCLUSIONS: These data demonstrate that ALDH2 deficiency enhances EtOH-induced disruption of intestinal epithelial tight junctions, barrier dysfunction, and liver damage.


Subject(s)
Aldehyde Dehydrogenase/deficiency , Ethanol/toxicity , Fatty Liver/chemically induced , Fatty Liver/metabolism , Tight Junctions/drug effects , Tight Junctions/metabolism , Aldehyde Dehydrogenase, Mitochondrial , Animals , Fatty Liver/pathology , Female , Gastrointestinal Absorption/drug effects , Gastrointestinal Absorption/physiology , Mice , Mice, Inbred C57BL , Mice, Knockout , Tight Junctions/pathology
15.
PLoS One ; 9(4): e94612, 2014.
Article in English | MEDLINE | ID: mdl-24760006

ABSTRACT

The splice site mutation in the IKBKAP gene coding for IKAP protein leads to the tissue-specific skipping of exon 20, with concomitant reduction in IKAP protein production. This causes the neurodevelopmental, autosomal-recessive genetic disorder - Familial Dysautonomia (FD). The molecular hallmark of FD is the severe reduction of IKAP protein in the nervous system that is believed to be the main reason for the devastating symptoms of this disease. Our recent studies showed that in the brain of two FD patients, genes linked to oligodendrocyte differentiation and/or myelin formation are significantly downregulated, implicating IKAP in the process of myelination. However, due to the scarcity of FD patient tissues, these results awaited further validation in other models. Recently, two FD mouse models that faithfully recapitulate FD were generated, with two types of mutations resulting in severely low levels of IKAP expression. Here we demonstrate that IKAP deficiency in these FD mouse models affects a similar set of genes as in FD patients' brains. In addition, we identified two new IKAP target genes involved in oligodendrocyte cells differentiation and myelination, further underscoring the essential role of IKAP in this process. We also provide proof that IKAP expression is needed cell-autonomously for the regulation of expression of genes involved in myelin formation since knockdown of IKAP in the Oli-neu oligodendrocyte precursor cell line results in similar deficiencies. Further analyses of these two experimental models will compensate for the lack of human postmortem tissues and will advance our understanding of the role of IKAP in myelination and the disease pathology.


Subject(s)
Carrier Proteins/metabolism , Myelin Sheath/metabolism , Oligodendroglia/cytology , Oligodendroglia/metabolism , Animals , Carrier Proteins/genetics , Cell Differentiation/genetics , Cell Differentiation/physiology , Disease Models, Animal , Dysautonomia, Familial/genetics , Dysautonomia, Familial/metabolism , Humans , In Vitro Techniques , Intracellular Signaling Peptides and Proteins , Mice , Mutation , Myelin Sheath/genetics
16.
Hum Mol Genet ; 21(23): 5078-90, 2012 Dec 01.
Article in English | MEDLINE | ID: mdl-22922231

ABSTRACT

Hereditary sensory and autonomic neuropathies (HSANs) encompass a group of genetically inherited disorders characterized by sensory and autonomic dysfunctions. Familial dysautonomia (FD), also known as HSAN type III, is an autosomal recessive disorder that affects 1/3600 live births in the Ashkenazi Jewish population. The disease is caused by abnormal development and progressive degeneration of the sensory and autonomic nervous systems and is inevitably fatal, with only 50% of patients reaching the age of 40. FD is caused by a mutation in intron 20 of the Ikbkap gene that results in severe reduction in the expression of its encoded protein, inhibitor of kappaB kinase complex-associated protein (IKAP). Although the mutation that causes FD was identified in 2001, so far there is no appropriate animal model that recapitulates the disorder. Here, we report the generation and characterization of the first mouse models for FD that recapitulate the molecular and pathological features of the disease. Important for therapeutic interventions is also our finding that a slight increase in IKAP levels is enough to ameliorate the phenotype and increase the life span. Understanding the mechanisms underlying FD will provide insights for potential new therapeutic interventions not only for FD, but also for other peripheral neuropathies.


Subject(s)
Carrier Proteins/genetics , Disease Models, Animal , Dysautonomia, Familial/genetics , Dysautonomia, Familial/metabolism , Gene Expression Regulation , Mice , Alleles , Animals , Behavior, Animal , Carrier Proteins/metabolism , Dysautonomia, Familial/pathology , Female , Ganglia, Sensory/metabolism , Ganglia, Sensory/pathology , Ganglia, Sympathetic/metabolism , Ganglia, Sympathetic/pathology , Gene Order , Gene Targeting , Genotype , Intracellular Signaling Peptides and Proteins , Male , Phenotype
17.
PLoS One ; 6(10): e27015, 2011.
Article in English | MEDLINE | ID: mdl-22046433

ABSTRACT

Familial Dysautonomia (FD) is an autosomal recessive disorder that affects 1/3,600 live births in the Ashkenazi Jewish population, and leads to death before the age of 40. The disease is characterized by abnormal development and progressive degeneration of the sensory and autonomic nervous system. A single base pair substitution in intron 20 of the Ikbkap gene accounts for 98% of FD cases, and results in the expression of low levels of the full-length mRNA with simultaneous expression of an aberrantly spliced mRNA in which exon 20 is missing. To date, there is no animal model for the disease, and the essential cellular functions of IKAP--the protein encoded by Ikbkap--remain unknown. To better understand the normal function of IKAP and in an effort to generate a mouse model for FD, we have targeted the mouse Ikbkap gene by homologous recombination. We created two distinct alleles that result in either loss of Ikbkap expression, or expression of an mRNA lacking only exon 20. Homozygosity for either mutation leads to developmental delay, cardiovascular and brain malformations, accompanied with early embryonic lethality. Our analyses indicate that IKAP is essential for expression of specific genes involved in cardiac morphogenesis, and that cardiac failure is the likely cause of abnormal vascular development and embryonic lethality. Our results also indicate that deletion of exon 20 abolishes gene function. This implies that the truncated IKAP protein expressed in FD patients does not retain any significant biological function.


Subject(s)
Carrier Proteins/genetics , Dysautonomia, Familial/genetics , Mutation , Pregnancy Complications/genetics , Animals , Cardiovascular Abnormalities/genetics , Carrier Proteins/physiology , Developmental Disabilities/genetics , Exons/genetics , Female , Fetal Death/genetics , Intracellular Signaling Peptides and Proteins , Mice , Pregnancy
18.
J Clin Invest ; 121(11): 4372-82, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21985783

ABSTRACT

Huntington disease (HD) is a devastating autosomal-dominant neurodegenerative disorder. It is caused by expansion of a CAG repeat in the first exon of the huntingtin (HTT) gene that encodes a mutant HTT protein with a polyglutamine (polyQ) expansion at the amino terminus. Here, we demonstrate that WT HTT regulates ciliogenesis by interacting through huntingtin-associated protein 1 (HAP1) with pericentriolar material 1 protein (PCM1). Loss of Htt in mouse cells impaired the retrograde trafficking of PCM1 and thereby reduced primary cilia formation. In mice, deletion of Htt in ependymal cells led to PCM1 mislocalization, alteration of the cilia layer, and hydrocephalus. Pathogenic polyQ expansion led to centrosomal accumulation of PCM1 and abnormally long primary cilia in mouse striatal cells. PCM1 accumulation in ependymal cells was associated with longer cilia and disorganized cilia layers in a mouse model of HD and in HD patients. Longer cilia resulted in alteration of the cerebrospinal fluid flow. Thus, our data indicate that WT HTT is essential for protein trafficking to the centrosome and normal ciliogenesis. In HD, hypermorphic ciliogenesis may affect signaling and neuroblast migration so as to dysregulate brain homeostasis and exacerbate disease progression.


Subject(s)
Autoantigens/genetics , Autoantigens/metabolism , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Huntington Disease/genetics , Huntington Disease/metabolism , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Nuclear Proteins/genetics , Nuclear Proteins/metabolism , Animals , Brain/metabolism , Brain/pathology , Centrosome/metabolism , Cilia/genetics , Cilia/metabolism , Cilia/pathology , Disease Models, Animal , Humans , Huntingtin Protein , Huntington Disease/pathology , Mice , Mice, Knockout , Microtubules/metabolism , Peptides/genetics , Signal Transduction , Trinucleotide Repeat Expansion
19.
Int Rev Neurobiol ; 98: 325-72, 2011.
Article in English | MEDLINE | ID: mdl-21907094

ABSTRACT

Huntington's disease (HD) is an autosomal dominant progressive neurodegenerative disorder that prominently affects the basal ganglia, leading to affective, cognitive, behavioral and motor decline. The basis of HD is a CAG repeat expansion to >35 CAG in a gene that codes for a ubiquitous protein known as huntingtin, resulting in an expanded N-terminal polyglutamine tract. The size of the expansion is correlated with disease severity, with increasing CAG accelerating the age of onset. A variety of possibilities have been proposed as to the mechanism by which the mutation causes preferential injury to the basal ganglia. The present chapter provides a basic overview of the genetics and pathology of HD.


Subject(s)
Brain/pathology , Genetic Predisposition to Disease , Huntington Disease/genetics , Huntington Disease/pathology , Nerve Tissue Proteins/genetics , Nuclear Proteins/genetics , Humans , Huntingtin Protein , Trinucleotide Repeat Expansion/genetics
20.
Neuron ; 67(3): 392-406, 2010 Aug 12.
Article in English | MEDLINE | ID: mdl-20696378

ABSTRACT

Huntingtin is the protein mutated in Huntington's disease, a devastating neurodegenerative disorder. We demonstrate here that huntingtin is essential to control mitosis. Huntingtin is localized at spindle poles during mitosis. RNAi-mediated silencing of huntingtin in cells disrupts spindle orientation by mislocalizing the p150(Glued) subunit of dynactin, dynein, and the large nuclear mitotic apparatus NuMA protein. This leads to increased apoptosis following mitosis of adherent cells in vitro. In vivo inactivation of huntingtin by RNAi or by ablation of the Hdh gene affects spindle orientation and cell fate of cortical progenitors of the ventricular zone in mouse embryos. This function is conserved in Drosophila, the specific disruption of Drosophila huntingtin in neuroblast precursors leading to spindle misorientation. Moreover, Drosophila huntingtin restores spindle misorientation in mammalian cells. These findings reveal an unexpected role for huntingtin in dividing cells, with potential important implications in health and disease.


Subject(s)
Microtubule-Associated Proteins/physiology , Neurogenesis/physiology , Neurons/cytology , Neurons/physiology , Spindle Apparatus/physiology , Animals , Cell Enlargement , Cells, Cultured , Drosophila Proteins , Drosophila melanogaster , HeLa Cells , Humans , Huntingtin Protein , Mice , Mice, Transgenic , Microtubule-Associated Proteins/deficiency , Microtubules/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...