Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Med Dosim ; 37(3): 257-64, 2012.
Article in English | MEDLINE | ID: mdl-22365418

ABSTRACT

Twenty-three targets in 16 patients treated with stereotactic radiosurgery (SRS) or stereotactic body radiotherapy (SBRT) were analyzed in terms of dosimetric homogeneity, target conformity, organ-at-risk (OAR) sparing, monitor unit (MU) usage, and beam-on time per fraction using RapidArc volumetric-modulated arc therapy (VMAT) vs. multifield sliding-window intensity-modulated radiation therapy (IMRT). Patients underwent computed tomography simulation with site-specific immobilization. Magnetic resonance imaging fusion and optical tracking were incorporated as clinically indicated. Treatment planning was performed using Eclipse v8.6 to generate sliding-window IMRT and 1-arc and 2-arc RapidArc plans. Dosimetric parameters used for target analysis were RTOG conformity index (CI(RTOG)), homogeneity index (HI(RTOG)), inverse Paddick Conformity Index (PCI), D(mean) and D5-D95. OAR sparing was analyzed in terms of D(max) and D(mean). Treatment delivery was evaluated based on measured beam-on times delivered on a Varian Trilogy linear accelerator and recorded MU values. Dosimetric conformity, homogeneity, and OAR sparing were comparable between IMRT, 1-arc RapidArc and 2-arc RapidArc plans. Mean beam-on times ± SD for IMRT and 1-arc and 2-arc treatments were 10.5 ± 7.3, 2.6 ± 1.6, and 3.0 ± 1.1 minutes, respectively. Mean MUs were 3041, 1774, and 1676 for IMRT, 1-, and 2-arc plans, respectively. Although dosimetric conformity, homogeneity, and OAR sparing were similar between these techniques, SRS and SBRT fractions treated with RapidArc were delivered with substantially less beam-on time and fewer MUs than IMRT. The rapid delivery of SRS and SBRT with RapidArc improved workflow on the linac with these otherwise time-consuming treatments and limited the potential for intrafraction organ and patient motion, which can cause significant dosimetric errors. These clinically important advantages make image-guided RapidArc useful in the delivery of SRS and SBRT to intracranial and extracranial targets.


Subject(s)
Brain Neoplasms/diagnostic imaging , Brain Neoplasms/radiotherapy , Radiometry/methods , Radiosurgery/methods , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, Image-Guided/methods , Tomography, X-Ray Computed/methods , Adult , Aged , Female , Humans , Middle Aged , Reproducibility of Results , Sensitivity and Specificity , Treatment Outcome , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...