Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 140
Filter
1.
Blood ; 2024 May 28.
Article in English | MEDLINE | ID: mdl-38805637

ABSTRACT

Anti-CD19 chimeric antigen receptor T-cells (CD19-CAR) represent an effective treatment for relapsed/refractory B-cell malignancies but incomplete responses often result in early disease progression. We here assessed potential benefits of co-administering CD20-targeting bispecific antibodies (CD20-BsAb) with CD19-CAR, aiming to enhance immunotherapeutic efficacy. Addition of CD20-BsAb to co-cultures of CD19-CAR and primary samples of B-cell malignancies, comprising malignant B- and endogenous T-cells, significantly improved killing of malignant cells alongside enhanced expansion of both endogenous T-cells and CD19-CAR. CD20-BsAb induced an increase in proliferation and activation of endogenous T-cells and CD19-CAR. In an immunocompetent mouse model of CLL, relapse after initial treatment response frequently occurred after CD19-CAR monotherapy. Combination with injections of CD20-BsAb significantly enhanced treatment response and resulted in improved eradication of malignant cells. Higher efficacy was accompanied by improved T-cell expansion upon CD20-BsAb administration and resulted in longer survival, with 80% of mice being cured with no detectable malignant cell population within eight weeks of therapy initiation. Collectively, our in-vitro and in-vivo data demonstrate enhanced therapeutic efficacy of CD19-CAR when combined with CD20-BsAb in B-cell malignancies. Activation and proliferation of both infused CAR T-cells as well as endogenous T-cells may contribute to improved disease control.

2.
Blood ; 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38684038

ABSTRACT

The T-box transcription factor T-bet is known as a master regulator of T-cell response but its role in malignant B cells is not sufficiently explored. Here, we conducted single-cell resolved multi-omics analyses of malignant B cells from patients with chronic lymphocytic leukemia (CLL) and studied a CLL mouse model with genetic knockout of TBX21. We found that T-bet acts as a tumor suppressor in malignant B cells by decreasing their proliferation rate. NF-κB activity induced by inflammatory signals provided by the microenvironment, triggered T-bet expression which impacted on promoter proximal and distal chromatin co-accessibility and controlled a specific gene signature by mainly suppressing transcription. Gene set enrichment analysis identified a positive regulation of interferon signaling, and a negative control of proliferation by T-bet. In line, we showed that T-bet represses cell cycling and is associated with longer overall survival of CLL patients. Our study uncovers a novel tumor suppressive role of T-bet in malignant B cells via its regulation of inflammatory processes and cell cycling which has implications for stratification and therapy of CLL patients. Linking T-bet activity to inflammation explains the good prognostic role of genetic alterations in inflammatory signaling pathways in CLL.

3.
Front Oncol ; 14: 1359115, 2024.
Article in English | MEDLINE | ID: mdl-38665949

ABSTRACT

Gold standard for the establishment of the diagnosis of myelodysplastic syndromes (MDS) are cytomorphological features of hematopoietic cells in peripheral blood and bone marrow aspirates. There is increasing evidence that bone marrow histomorphology not only aids in the diagnosis of MDS but can provide additional prognostic information, particularly through assessment of fibrosis and cellularity. However, there is only sparse data on direct comparison between histological and cytomorphological findings within the same MDS patient cohort. Therefore, we performed such an analysis under exceptionally well-standardized conditions. We reexamined biopsy material of 128 patients from the Düsseldorf MDS registry who underwent bone marrow trephine biopsy (in addition to bone marrow aspiration) at the time of diagnosis, addressing the following items: a. Analysis of concordance of diagnoses made by histology and cytomorphology b. Analysis of additional information by histology with regard to the diagnosis and prognosis. The respective biomaterials were available at our institution and had been processed according to unchanged protocols between 1992 and 2010. Fresh histopathological sections were obtained from the tissue blocks, stained under identical conditions and re-assessed by a designated expert pathologist (C.B.) without knowledge of the previous histopathological report or the respective cytomorphological diagnosis. The latter, likewise, was uniformly made by the same expert cytomorphologist (U.G.). Histopathology of bone marrow trephine biopsies reliably captured the diagnosis of MDS. Assignment to the diagnostic WHO subgroup was not entirely concordant with cytomorphology, mainly due to incongruences between the proportion of CD34-positive cells on histopathology and the cytomorphological blast count. Histopathology provided additional diagnostic and prognostic information with high diagnostic and prognostic significance, such as fibrosis. Likewise, histopathology allowed more reliable estimation of bone marrow cellularity.

4.
Circ Res ; 134(7): 875-891, 2024 Mar 29.
Article in English | MEDLINE | ID: mdl-38440901

ABSTRACT

BACKGROUND: Systemic sclerosis (SSc) is a connective tissue disease that can serve as a model to study vascular changes in response to inflammation, autoimmunity, and fibrotic remodeling. Although microvascular changes are the earliest histopathologic manifestation of SSc, the vascular pathophysiology remains poorly understood. METHODS: We applied spatial proteomic approaches to deconvolute the heterogeneity of vascular cells at the single-cell level in situ and characterize cellular alterations of the vascular niches of patients with SSc. Skin biopsies of patients with SSc and control individuals were analyzed by imaging mass cytometry, yielding a total of 90 755 cells including 2987 endothelial cells and 4096 immune cells. RESULTS: We identified 7 different subpopulations of blood vascular endothelial cells (VECs), 2 subpopulations of lymphatic endothelial cells, and 3 subpopulations of pericytes. A novel population of CD34+;αSMA+ (α-smooth muscle actin);CD31+ VECs was more common in SSc, whereas endothelial precursor cells were decreased. Co-detection by indexing and tyramide signal amplification confirmed these findings. The microenvironment of CD34+;αSMA+;CD31+ VECs was enriched for immune cells and myofibroblasts, and CD34+;αSMA+;CD31+ VECs expressed markers of endothelial-to-mesenchymal transition. The density of CD34+;αSMA+;CD31+ VECs was associated with clinical progression of fibrosis in SSc. CONCLUSIONS: Using spatial proteomics, we unraveled the heterogeneity of vascular cells in control individuals and patients with SSc. We identified CD34+;αSMA+;CD31+ VECs as a novel endothelial cell population that is increased in patients with SSc, expresses markers for endothelial-to-mesenchymal transition, and is located in close proximity to immune cells and myofibroblasts. CD34+;αSMA+;CD31+ VEC counts were associated with clinical outcomes of progressive fibrotic remodeling, thus providing a novel cellular correlate for the crosstalk of vasculopathy and fibrosis.


Subject(s)
Endothelial Progenitor Cells , Scleroderma, Systemic , Humans , Proteomics , Scleroderma, Systemic/complications , Scleroderma, Systemic/pathology , Fibrosis , Myofibroblasts/pathology
5.
Cancers (Basel) ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38339283

ABSTRACT

Up to 50% of patients with high-risk myeloid malignancies die of relapse after allogeneic stem cell transplantation. Current sequential conditioning regimens like the FLAMSA protocol combine intensive induction therapy with TBI or alkylators. Venetoclax has synergistic effects to chemotherapy. In a retrospective survey among German transplant centers, we identified 61 patients with myeloid malignancies that had received FLAMSA-based sequential conditioning with venetoclax between 2018 and 2022 as an individualized treatment approach. Sixty patients (98%) had active disease at transplant and 74% had genetic high-risk features. Patients received allografts from matched unrelated, matched related, or mismatched donors. Tumor lysis syndrome occurred in two patients but no significant non-hematologic toxicity related to venetoclax was observed. On day +30, 55 patients (90%) were in complete remission. Acute GvHD II°-IV° occurred in 17 (28%) and moderate/severe chronic GvHD in 7 patients (12%). Event-free survival and overall survival were 64% and 80% at 1 year as well as 57% and 75% at 2 years, respectively. The off-label combination of sequential FLAMSA-RIC with venetoclax appears to be safe and highly effective. To further validate these insights and enhance the idea of smart conditioning, a controlled prospective clinical trial was initiated in July 2023.

6.
Nat Cell Biol ; 26(3): 478-489, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38379051

ABSTRACT

The redirection of T cells has emerged as an attractive therapeutic principle in B cell non-Hodgkin lymphoma (B-NHL). However, a detailed characterization of lymphoma-infiltrating T cells across B-NHL entities is missing. Here we present an in-depth T cell reference map of nodal B-NHL, based on cellular indexing of transcriptomes and epitopes, T cell receptor sequencing, flow cytometry and multiplexed immunofluorescence applied to 101 lymph nodes from patients with diffuse large B cell, mantle cell, follicular or marginal zone lymphoma, and from healthy controls. This multimodal resource revealed quantitative and spatial aberrations of the T cell microenvironment across and within B-NHL entities. Quantitative differences in PD1+ TCF7- cytotoxic T cells, T follicular helper cells or IKZF3+ regulatory T cells were linked to their clonal expansion. The abundance of PD1+ TCF7- cytotoxic T cells was associated with poor survival. Our study portrays lymphoma-infiltrating T cells with unprecedented comprehensiveness and provides a unique resource for the investigation of lymphoma biology and prognosis.


Subject(s)
Lymphoma, B-Cell, Marginal Zone , T-Lymphocytes , Humans , T-Lymphocytes/pathology , B-Lymphocytes/pathology , Lymphoma, B-Cell, Marginal Zone/pathology , Transforming Growth Factor beta , Tumor Microenvironment
7.
Cancers (Basel) ; 16(4)2024 Feb 16.
Article in English | MEDLINE | ID: mdl-38398198

ABSTRACT

Despite notable advancements in infection prevention and treatment, individuals with hematologic malignancies still face the persistent threat of frequent and life-threatening complications. Those undergoing chemotherapy or other disease-modifying therapies are particularly vulnerable to developing infectious complications, increasing the risk of mortality. Myelodysplastic syndromes (MDS) predominantly affect the elderly, with the incidence rising with age and peaking at around 70 years. Patients with MDS commonly present with unexplained low blood-cell counts, primarily anemia, and often experience varying degrees of neutropenia as the disease progresses. In our subsequent retrospective study involving 1593 patients from the Düsseldorf MDS Registry, we aimed at outlining the incidence of infections in MDS patients and identifying factors contributing to heightened susceptibility to infectious complications in this population.

8.
Blood Adv ; 8(10): 2575-2588, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38241490

ABSTRACT

ABSTRACT: The hallmark of multiple myeloma (MM) is a clonal plasma cell infiltration in the bone marrow accompanied by myelosuppression and osteolysis. Premalignant stages such as monoclonal gammopathy of undetermined significance (MGUS) and asymptomatic stages such as smoldering myeloma (SMM) can progress to MM. Mesenchymal stromal cells (MSCs) are an integral component of the bone marrow microenvironment and play an important role in osteoblast differentiation and hematopoietic support. Although stromal alterations have been reported in MM contributing to hematopoietic insufficiency and osteolysis, it is not clear whether alterations in MSC already occur in MGUS or SMM. In this study, we analyzed MSCs from MGUS, SMM, and MM regarding their properties and functionality and performed messenger RNA sequencing to find underlying molecular signatures in different disease stages. A high number of senescent cells and a reduced osteogenic differentiation capacity and hematopoietic support were already present in MGUS MSC. As shown by RNA sequencing, there was a broad spectrum of differentially expressed genes including genes of the BMP/TGF-signaling pathway, detected already in MGUS and that clearly increases in patients with SMM and MM. Our data may help to block these signaling pathways in the future to hinder progression to MM.


Subject(s)
Mesenchymal Stem Cells , Monoclonal Gammopathy of Undetermined Significance , Multiple Myeloma , Smoldering Multiple Myeloma , Humans , Monoclonal Gammopathy of Undetermined Significance/genetics , Monoclonal Gammopathy of Undetermined Significance/pathology , Multiple Myeloma/genetics , Multiple Myeloma/pathology , Mesenchymal Stem Cells/metabolism , Cell Differentiation , Male , Female , Aged
9.
Stud Health Technol Inform ; 310: 1016-1020, 2024 Jan 25.
Article in English | MEDLINE | ID: mdl-38269968

ABSTRACT

In the SMART-CARE project- a systems medicine approach to stratification of cancer recurrence in Heidelberg, Germany - a streamlined mass-spectrometry (MS) workflow for identification of cancer relapse was developed. This project has multiple partners from clinics, laboratories and computational teams. For optimal collaboration, consistent documentation and centralized storage, the linked data repository was designed. Clinical, laboratory and computational group members interact with this platform and store meta- and raw-data. The specific architectural choices, such as pseudonymization service, uploading process and other technical specifications as well as lessons learned are presented in this work. Altogether, relevant information in order to provide other research groups with a head-start for tackling MS data management in the context of systems medicine research projects is described.


Subject(s)
Clinical Laboratory Services , Neoplasms , Humans , Data Management , Documentation , Mass Spectrometry , Neoplasms/therapy
10.
Blood ; 143(12): 1080-1090, 2024 Mar 21.
Article in English | MEDLINE | ID: mdl-38096368

ABSTRACT

ABSTRACT: Follicular lymphoma (FL) is an indolent yet incurable germinal center B-cell lymphoma retaining a characteristic follicular architecture. FL tumor B cells are highly dependent on direct and indirect interactions with a specific and complex tumor microenvironment (TME). Recently, great progress has been made in describing the heterogeneity and dynamics of the FL TME and in depicting how tumor clonal and functional heterogeneity rely on the integration of TME-related signals. Specifically, the FL TME is enriched for exhausted cytotoxic T cells, immunosuppressive regulatory T cells of various origins, and follicular helper T cells overexpressing B-cell and TME reprogramming factors. FL stromal cells have also emerged as crucial determinants of tumor growth and remodeling, with a key role in the deregulation of chemokines and extracellular matrix composition. Finally, tumor-associated macrophages play a dual function, contributing to FL cell phagocytosis and FL cell survival through long-lasting B-cell receptor activation. The resulting tumor-permissive niches show additional layers of site-to-site and kinetic heterogeneity, which raise questions about the niche of FL-committed precursor cells supporting early lymphomagenesis, clonal evolution, relapse, and transformation. In turn, FL B-cell genetic and nongenetic determinants drive the reprogramming of FL immune and stromal TME. Therefore, offering a functional picture of the dynamic cross talk between FL cells and TME holds the promise of identifying the mechanisms of therapy resistance, stratifying patients, and developing new therapeutic approaches capable of eradicating FL disease in its different ecosystems.


Subject(s)
Lymphoma, B-Cell , Lymphoma, Follicular , Humans , Lymphoma, Follicular/pathology , Ecosystem , Neoplasm Recurrence, Local/pathology , B-Lymphocytes/pathology , Germinal Center/pathology , Lymphoma, B-Cell/pathology , Tumor Microenvironment
11.
Adv Healthc Mater ; 13(10): e2302607, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38118064

ABSTRACT

Stem cells are regulated not only by biochemical signals but also by biophysical properties of extracellular matrix (ECM). The ECM is constantly monitored and remodeled because the fate of stem cells can be misdirected when the mechanical interaction between cells and ECM is imbalanced. A well-defined ECM model for bone marrow-derived human mesenchymal stem cells (hMSCs) based on supramolecular hydrogels containing reversible host-guest crosslinks is fabricated. The stiffness (Young's modulus E) of the hydrogels can be switched reversibly by altering the concentration of non-cytotoxic, free guest molecules dissolved in the culture medium. Fine-adjustment of substrate stiffness enables the authors to determine the critical stiffness level E* at which hMSCs turn the mechano-sensory machinery on or off. Next, the substrate stiffness across E* is switched and the dynamic adaptation characteristics such as morphology, traction force, and YAP/TAZ signaling of hMSCs are monitored. These data demonstrate the instantaneous switching of traction force, which is followed by YAP/TAZ signaling and morphological adaptation. Periodical switching of the substrate stiffness across E* proves that frequent applications of mechanical stimuli drastically suppress hMSC proliferation. Mechanical stimulation across E* level using dynamic hydrogels is a promising strategy for the on-demand control of hMSC transcription and proliferation.


Subject(s)
Hydrogels , Mesenchymal Stem Cells , Humans , Hydrogels/pharmacology , Hydrogels/chemistry , Signal Transduction , Extracellular Matrix , Elastic Modulus
12.
J Neurooncol ; 165(2): 329-342, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37976029

ABSTRACT

PURPOSE: Primary brain tumors are a leading cause of cancer-related death in children, and medulloblastoma is the most common malignant pediatric brain tumor. The current molecular characterization of medulloblastoma is mainly based on protein-coding genes, while little is known about the involvement of long non-coding RNAs (lncRNAs). This study aimed to elucidate the role of the lncRNA OTX2-AS1 in medulloblastoma. METHODS: Analyses of DNA copy number alterations, methylation profiles, and gene expression data were used to characterize molecular alterations of OTX2-AS1 in medulloblastoma tissue samples. In vitro analyses of medulloblastoma cell models and orthotopic in vivo experiments were carried out for functional characterization of OTX2-AS1. High-throughput drug screening was employed to identify pharmacological inhibitors, while proteomics and metabolomics analyses were performed to address potential mechanisms of drug action. RESULTS: We detected amplification and consecutive overexpression of OTX2 and OTX2-AS1 in a subset of medulloblastomas. In addition, OTX2-AS1 promoter methylation was linked to OTX2-AS1 expression. OTX2-AS1 knockout reduced medulloblastoma cell viability and cell migration in vitro and prolonged survival in the D283 orthotopic medulloblastoma mouse xenograft model. Pharmacological inhibition of BCL-2 suppressed the growth of OTX2-AS1 overexpressing medulloblastoma cells in vitro. CONCLUSIONS: Our study revealed a pro-tumorigenic role of OTX2-AS1 in medulloblastoma and identified BCL-2 inhibition as a potential therapeutic approach to target OTX2-AS1 overexpressing medulloblastoma cells.


Subject(s)
Brain Neoplasms , Cerebellar Neoplasms , Medulloblastoma , RNA, Long Noncoding , Animals , Child , Humans , Mice , Brain Neoplasms/pathology , Cell Line, Tumor , Cell Proliferation , Cerebellar Neoplasms/drug therapy , Cerebellar Neoplasms/genetics , Cerebellar Neoplasms/metabolism , Gene Expression Regulation, Neoplastic , Medulloblastoma/pathology , Otx Transcription Factors/genetics , Otx Transcription Factors/metabolism , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Long Noncoding/genetics
14.
Nat Cancer ; 4(12): 1648-1659, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37783805

ABSTRACT

Ex vivo drug response profiling is a powerful tool to study genotype-drug response associations and is being explored as a tool set for precision medicine in cancer. Here we conducted a prospective non-interventional trial to investigate feasibility of ex vivo drug response profiling for treatment guidance in hematologic malignancies (SMARTrial, NCT03488641 ). The primary endpoint to provide drug response profiling reports within 7 d was met in 91% of all study participants (N = 80). Secondary endpoint analysis revealed that ex vivo resistance to chemotherapeutic drugs predicted chemotherapy treatment failure in vivo. We confirmed the predictive value of ex vivo response to chemotherapy in a validation cohort of 95 individuals with acute myeloid leukemia treated with daunorubicin and cytarabine. Ex vivo drug response profiles improved ELN-22 risk stratification in individuals with adverse risk. We conclude that ex vivo drug response profiling is clinically feasible and has the potential to predict chemotherapy response in individuals with hematologic malignancies beyond clinically established genetic markers.


Subject(s)
Hematologic Neoplasms , Leukemia, Myeloid, Acute , Humans , Cytarabine/therapeutic use , Daunorubicin/therapeutic use , Hematologic Neoplasms/drug therapy , Hematologic Neoplasms/genetics , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/genetics , Prospective Studies , Antibiotics, Antineoplastic/therapeutic use , Antimetabolites, Antineoplastic/therapeutic use , Treatment Outcome
15.
Hemasphere ; 7(8): e926, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37492436

ABSTRACT

Secondary central nervous system lymphoma (SCNSL) is a rare and difficult to treat type of Non-Hodgkin lymphoma characterized by systemic and central nervous system (CNS) disease manifestations. In this study, 124 patients with SCNSL intensively treated and with clinical long-term follow-up were included. Initial histopathology, as divided in low-grade, other aggressive, and diffuse large B-cell lymphoma (DLBCL), was of prognostic significance. Overall response to induction treatment was a prognostic factor with early responding DLBCL-SCNSL in comparison to those non-responding experiencing a significantly better progression-free survival (PFS) and overall survival (OS). However, the type of induction regime was not prognostic for survival. Following consolidating high-dose chemotherapy and autologous stem cell transplantation (HDT-ASCT), DLBCL-SCNSL patients had better median PFS and OS. The important role of HDT-ASCT was further highlighted by favorable responses and survival of patients not responding to induction therapy and by excellent results in patients with de novo DLBCL-SCNSL (65% long-term survival). SCNSL identified as a progression of disease within 6 months of initial systemic lymphoma presentation represented a previously not appreciated subgroup with particularly dismal outcome. This temporal stratification model of SCNSL diagnosis revealed CNS progression of disease within 6 months as a promising candidate prognosticator for future studies.

16.
Haematologica ; 108(12): 3308-3320, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37381752

ABSTRACT

Clonal hematopoiesis (CH) is an age-related condition driven by stem and progenitor cells harboring recurrent mutations linked to myeloid neoplasms. Currently, potential effects on hematopoiesis, stem cell function and regenerative potential under stress conditions are unknown. We performed targeted DNA sequencing of 457 hematopoietic stem cell grafts collected for autologous stem cell transplantation (ASCT) in myeloma patients and correlated our findings with high-dimensional longitudinal clinical and laboratory data (26,510 data points for blood cell counts/serum values in 25 days around transplantation). We detected CHrelated mutations in 152 patients (33.3%). Since many patients (n=54) harbored multiple CH mutations in one or more genes, we applied a non-negative matrix factorization (NMF) clustering algorithm to identify genes that are commonly co-mutated in an unbiased approach. Patients with CH were assigned to one of three clusters (C1-C3) and compared to patients without CH (C0) in a gene specific manner. To study the dynamics of blood cell regeneration following ASCT, we developed a time-dependent linear mixed effect model to validate differences in blood cell count trajectories amongst different clusters. The results demonstrated that C2, composed of patients with DNMT3A and PPM1D single and co-mutated CH, correlated with reduced stem cell yields and delayed platelet count recovery following ASCT. Also, the benefit of maintenance therapy was particularly strong in C2 patients. Taken together, these data indicate an impaired regenerative potential of hematopoietic stem cell grafts harboring CH with DNMT3A and PPM1D mutations.


Subject(s)
Clonal Hematopoiesis , Hematopoietic Stem Cell Transplantation , Humans , Transplantation, Autologous , Hematopoiesis/genetics , Mutation , Regeneration , Protein Phosphatase 2C/genetics
17.
Blood Adv ; 7(19): 5925-5936, 2023 10 10.
Article in English | MEDLINE | ID: mdl-37352275

ABSTRACT

Large-scale compound screens are a powerful model system for understanding variability of treatment response and discovering druggable tumor vulnerabilities of hematological malignancies. However, as mostly performed in a monoculture of tumor cells, these assays disregard modulatory effects of the in vivo microenvironment. It is an open question whether and to what extent coculture with bone marrow stromal cells could improve the biological relevance of drug testing assays over monoculture. Here, we established a high-throughput platform to measure ex vivo sensitivity of 108 primary blood cancer samples to 50 drugs in monoculture and coculture with bone marrow stromal cells. Stromal coculture conferred resistance to 52% of compounds in chronic lymphocytic leukemia (CLL) and 36% of compounds in acute myeloid leukemia (AML), including chemotherapeutics, B-cell receptor inhibitors, proteasome inhibitors, and Bromodomain and extraterminal domain inhibitors. Only the JAK inhibitors ruxolitinib and tofacitinib exhibited increased efficacy in AML and CLL stromal coculture. We further confirmed the importance of JAK-STAT signaling for stroma-mediated resistance by showing that stromal cells induce phosphorylation of STAT3 in CLL cells. We genetically characterized the 108 cancer samples and found that drug-gene associations strongly correlated between monoculture and coculture. However, effect sizes were lower in coculture, with more drug-gene associations detected in monoculture than in coculture. Our results justify a 2-step strategy for drug perturbation testing, with large-scale screening performed in monoculture, followed by focused evaluation of potential stroma-mediated resistances in coculture.


Subject(s)
Hematologic Neoplasms , Leukemia, Lymphocytic, Chronic, B-Cell , Leukemia, Myeloid, Acute , Humans , Coculture Techniques , Leukemia, Lymphocytic, Chronic, B-Cell/drug therapy , Leukemia, Lymphocytic, Chronic, B-Cell/pathology , Drug Resistance, Neoplasm , Hematologic Neoplasms/drug therapy , Tumor Microenvironment
18.
Haematologica ; 108(10): 2664-2676, 2023 10 01.
Article in English | MEDLINE | ID: mdl-37226709

ABSTRACT

Understanding the molecular and phenotypic heterogeneity of cancer is a prerequisite for effective treatment. For chronic lymphocytic leukemia (CLL), recurrent genetic driver events have been extensively cataloged, but this does not suffice to explain the disease's diverse course. Here, we performed RNA sequencing on 184 CLL patient samples. Unsupervised analysis revealed two major, orthogonal axes of gene expression variation: the first one represented the mutational status of the immunoglobulin heavy variable (IGHV) genes, and concomitantly, the three-group stratification of CLL by global DNA methylation. The second axis aligned with trisomy 12 status and affected chemokine, MAPK and mTOR signaling. We discovered non-additive effects (epistasis) of IGHV mutation status and trisomy 12 on multiple phenotypes, including the expression of 893 genes. Multiple types of epistasis were observed, including synergy, buffering, suppression and inversion, suggesting that molecular understanding of disease heterogeneity requires studying such genetic events not only individually but in combination. We detected strong differentially expressed gene signatures associated with major gene mutations and copy number aberrations including SF3B1, BRAF and TP53, as well as del(17)(p13), del(13)(q14) and del(11)(q22.3) beyond dosage effect. Our study reveals previously underappreciated gene expression signatures for the major molecular subtypes in CLL and the presence of epistasis between them.


Subject(s)
Leukemia, Lymphocytic, Chronic, B-Cell , Humans , Leukemia, Lymphocytic, Chronic, B-Cell/genetics , Transcriptome , Trisomy , Prognosis , Epistasis, Genetic , Mutation
19.
Nat Med ; 29(5): 1103-1112, 2023 05.
Article in English | MEDLINE | ID: mdl-37059834

ABSTRACT

BRAFV600E alterations are prevalent across multiple tumors. Here we present final efficacy and safety results of a phase 2 basket trial of dabrafenib (BRAF kinase inhibitor) plus trametinib (MEK inhibitor) in eight cohorts of patients with BRAFV600E-mutated advanced rare cancers: anaplastic thyroid carcinoma (n = 36), biliary tract cancer (n = 43), gastrointestinal stromal tumor (n = 1), adenocarcinoma of the small intestine (n = 3), low-grade glioma (n = 13), high-grade glioma (n = 45), hairy cell leukemia (n = 55) and multiple myeloma (n = 19). The primary endpoint of investigator-assessed overall response rate in these cohorts was 56%, 53%, 0%, 67%, 54%, 33%, 89% and 50%, respectively. Secondary endpoints were median duration of response (DoR), progression-free survival (PFS), overall survival (OS) and safety. Median DoR was 14.4 months, 8.9 months, not reached, 7.7 months, not reached, 31.2 months, not reached and 11.1 months, respectively. Median PFS was 6.7 months, 9.0 months, not reached, not evaluable, 9.5 months, 5.5 months, not evaluable and 6.3 months, respectively. Median OS was 14.5 months, 13.5 months, not reached, 21.8 months, not evaluable, 17.6 months, not evaluable and 33.9 months, respectively. The most frequent (≥20% of patients) treatment-related adverse events were pyrexia (40.8%), fatigue (25.7%), chills (25.7%), nausea (23.8%) and rash (20.4%). The encouraging tumor-agnostic activity of dabrafenib plus trametinib suggests that this could be a promising treatment approach for some patients with BRAFV600E-mutated advanced rare cancers. ClinicalTrials.gov registration: NCT02034110 .


Subject(s)
Adenocarcinoma , Glioma , Humans , Imidazoles/adverse effects , Pyridones/adverse effects , Pyrimidinones/adverse effects , Antineoplastic Combined Chemotherapy Protocols/adverse effects , Proto-Oncogene Proteins B-raf/genetics , Mutation/genetics
20.
Cells Dev ; 174: 203845, 2023 06.
Article in English | MEDLINE | ID: mdl-37116713

ABSTRACT

Adhesion of hematopoietic stem and progenitor cells (HSPCs) to the bone marrow niche plays critical roles in the maintenance of the most primitive HSPCs. The interactions of HSPC-niche interactions are clinically relevant in acute myeloid leukemia (AML), because (i) leukemia-initiating cells adhered to the marrow niche are protected from the cytotoxic effect by chemotherapy and (ii) mobilization of HSPCs from healthy donors' bone marrow is crucial for the effective stem cell transplantation. However, although many clinical agents have been developed for the HSPC mobilization, the effects caused by the extrinsic molecular cues were traditionally evaluated based on phenomenological observations. This review highlights the recent interdisciplinary challenges of hematologists, biophysicists and cell biologists towards the design of defined in vitro niche models and the development of physical biomarkers for quantitative indexing of differential effects of clinical agents on human HSPCs.


Subject(s)
Hematopoietic Stem Cell Transplantation , Leukemia, Myeloid, Acute , Humans , Hematopoietic Stem Cells/metabolism , Bone Marrow/metabolism , Bone Marrow Cells/metabolism , Leukemia, Myeloid, Acute/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...