Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Life Sci Alliance ; 7(3)2024 03.
Article in English | MEDLINE | ID: mdl-38182161

ABSTRACT

Neurodevelopmental disorders with intellectual disability (ND/ID) are a heterogeneous group of diseases driving lifelong deficits in cognition and behavior with no definitive cure. X-linked intellectual disability disorder 105 (XLID105, #300984; OMIM) is a ND/ID driven by hemizygous variants in the USP27X gene encoding a protein deubiquitylase with a role in cell proliferation and neural development. Currently, only four genetically diagnosed individuals from two unrelated families have been described with limited clinical data. Furthermore, the mechanisms underlying the disorder are unknown. Here, we report 10 new XLID105 individuals from nine families and determine the impact of gene variants on USP27X protein function. Using a combination of clinical genetics, bioinformatics, biochemical, and cell biology approaches, we determined that XLID105 variants alter USP27X protein biology via distinct mechanisms including changes in developmentally relevant protein-protein interactions and deubiquitylating activity. Our data better define the phenotypic spectrum of XLID105 and suggest that XLID105 is driven by USP27X functional disruption. Understanding the pathogenic mechanisms of XLID105 variants will provide molecular insight into USP27X biology and may create the potential for therapy development.


Subject(s)
Intellectual Disability , Mental Retardation, X-Linked , Humans , Cell Proliferation , Computational Biology , Intellectual Disability/genetics , Neurogenesis , Mental Retardation, X-Linked/genetics
2.
Nat Genet ; 55(9): 1598-1607, 2023 09.
Article in English | MEDLINE | ID: mdl-37550531

ABSTRACT

Several molecular and phenotypic algorithms exist that establish genotype-phenotype correlations, including facial recognition tools. However, no unified framework that investigates both facial data and other phenotypic data directly from individuals exists. We developed PhenoScore: an open-source, artificial intelligence-based phenomics framework, combining facial recognition technology with Human Phenotype Ontology data analysis to quantify phenotypic similarity. Here we show PhenoScore's ability to recognize distinct phenotypic entities by establishing recognizable phenotypes for 37 of 40 investigated syndromes against clinical features observed in individuals with other neurodevelopmental disorders and show it is an improvement on existing approaches. PhenoScore provides predictions for individuals with variants of unknown significance and enables sophisticated genotype-phenotype studies by testing hypotheses on possible phenotypic (sub)groups. PhenoScore confirmed previously known phenotypic subgroups caused by variants in the same gene for SATB1, SETBP1 and DEAF1 and provides objective clinical evidence for two distinct ADNP-related phenotypes, already established functionally.


Subject(s)
Artificial Intelligence , Matrix Attachment Region Binding Proteins , Humans , Phenotype , Algorithms , Machine Learning , Biological Variation, Population , DNA-Binding Proteins , Transcription Factors
4.
Fam Cancer ; 20(4): 279-287, 2021 10.
Article in English | MEDLINE | ID: mdl-34061292

ABSTRACT

Increasing use of genomic sequencing enables standardized screening of all childhood cancer predisposition syndromes (CPS) in children with cancer. Gene panels currently used often include adult-onset CPS genes and genes without substantial evidence linking them to cancer predisposition. We have developed criteria to select genes relevant for childhood-onset CPS and assembled a gene panel for use in children with cancer. We applied our criteria to 381 candidate genes, which were selected through two in-house panels (n = 338), a literature search (n = 39), and by assessing two Genomics England's PanelApp panels (n = 4). We developed evaluation criteria that determined a gene's eligibility for inclusion on a childhood-onset CPS gene panel. These criteria assessed (1) relevance in childhood cancer by a minimum of five childhood cancer patients reported carrying a pathogenic variant in the gene and (2) evidence supporting a causal relation between variants in this gene and cancer development. 138 genes fulfilled the criteria. In this study we have developed criteria to compile a childhood cancer predisposition gene panel which might ultimately be used in a clinical setting, regardless of the specific type of childhood cancer. This panel will be evaluated in a prospective study. The panel is available on (pediatric-cancer-predisposition-genepanel.nl) and will be regularly updated.


Subject(s)
Genetic Testing , Neoplastic Syndromes, Hereditary , Child , Genetic Predisposition to Disease , Humans , Neoplastic Syndromes, Hereditary/genetics , Patient Selection , Prospective Studies
5.
J Pathol ; 254(4): 494-504, 2021 07.
Article in English | MEDLINE | ID: mdl-33565090

ABSTRACT

TRIM28 was recently identified as a Wilms' tumour (WT) predisposition gene, with germline pathogenic variants identified in around 1% of isolated and 8% of familial WT cases. TRIM28 variants are associated with epithelial WT, but the presence of other tumour components or anaplasia does not exclude the presence of a germline or somatic TRIM28 variant. In children with WT, TRIM28 acts as a classical tumour suppressor gene, with both alleles generally disrupted in the tumour. Therefore, loss of TRIM28 (KAP1/TIF1beta) protein expression in tumour tissue by immunohistochemistry is an effective strategy to identify patients carrying pathogenic TRIM28 variants. TRIM28 is a ubiquitously expressed corepressor that binds transcription factors in a context-, species-, and cell-type-specific manner to control the expression of genes and transposable elements during embryogenesis and cellular differentiation. In this review, we describe the inheritance patterns, histopathological and clinical features of TRIM28-associated WT, as well as potential underlying mechanisms of tumourigenesis during embryonic kidney development. Recognizing germline TRIM28 variants in patients with WT can enable counselling, genetic testing, and potential early detection of WT in other children in the family. A further exploration of TRIM28-associated WT will help to unravel the diverse and complex mechanisms underlying WT development. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Subject(s)
Genes, Wilms Tumor , Genetic Predisposition to Disease/genetics , Kidney Neoplasms/genetics , Tripartite Motif-Containing Protein 28/genetics , Wilms Tumor/genetics , Humans , Mutation
6.
Clin Gastroenterol Hepatol ; 19(8): 1642-1651.e8, 2021 08.
Article in English | MEDLINE | ID: mdl-32585361

ABSTRACT

BACKGROUND & AIMS: Colorectal cancers (CRCs) are rare in adolescents and adults ages 25 years or younger. We analyzed clinical, pathology, and molecular features of colorectal tumors from adolescents and young adults in an effort to improve genetic counseling, surveillance, and, ultimately, treatment and outcomes. METHODS: We analyzed clinical data and molecular and genetic features of colorectal tumor tissues from 139 adolescents or young adults (age, ≤25 y; median age, 23 y; 58% male), collected from 2000 through 2017; tumor tissues and clinical data were obtained from the nationwide network and registry of histopathology and cytopathology and The Netherlands Cancer Registry, respectively. DNA samples from tumors were analyzed for microsatellite instability, mutations in 56 genes, and genome-wide somatic copy number aberrations. RESULTS: Mucinous and/or signet ring cell components were observed in 33% of tumor samples. A genetic tumor risk syndrome was confirmed for 39% of cases. Factors associated with shorter survival time included younger age at diagnosis, signet ring cell carcinoma, the absence of a genetic tumor risk syndrome, and diagnosis at an advanced stage of disease. Compared with colorectal tumors from patients ages 60 years or older in the Cancer Genome Atlas, higher proportions of tumors from adolescents or young adults were microsatellite stable with nearly diploid genomes, or contained somatic mutations in TP53 and POLE, whereas lower proportions contained mutations in APC. CONCLUSIONS: We found clinical, molecular, and genetic features of CRCs in adolescents or young adults to differ from those of patients older than age 60 years. In 39% of patients a genetic tumor risk syndrome was identified. These findings provide insight into the pathogenesis of CRC in young patients and suggest new strategies for clinical management. Performing genetic and molecular analyses for every individual diagnosed with CRC at age 25 years or younger would aid in this optimization.


Subject(s)
Colorectal Neoplasms , Microsatellite Instability , Adolescent , Adult , Colorectal Neoplasms/epidemiology , Colorectal Neoplasms/genetics , Female , Humans , Male , Middle Aged , Mutation , Netherlands , Young Adult
7.
Nucleic Acids Res ; 48(2): 770-787, 2020 01 24.
Article in English | MEDLINE | ID: mdl-31799629

ABSTRACT

Variants in ribosomal protein (RP) genes drive Diamond-Blackfan anemia (DBA), a bone marrow failure syndrome that can also predispose individuals to cancer. Inherited and sporadic RP gene variants are also linked to a variety of phenotypes, including malignancy, in individuals with no anemia. Here we report an individual diagnosed with DBA carrying a variant in the 5'UTR of RPL9 (uL6). Additionally, we report two individuals from a family with multiple cancer incidences carrying a RPL9 missense variant. Analysis of cells from these individuals reveals that despite the variants both driving pre-rRNA processing defects and 80S monosome reduction, the downstream effects are remarkably different. Cells carrying the 5'UTR variant stabilize TP53 and impair the growth and differentiation of erythroid cells. In contrast, ribosomes incorporating the missense variant erroneously read through UAG and UGA stop codons of mRNAs. Metabolic profiles of cells carrying the 5'UTR variant reveal an increased metabolism of amino acids and a switch from glycolysis to gluconeogenesis while those of cells carrying the missense variant reveal a depletion of nucleotide pools. These findings indicate that variants in the same RP gene can drive similar ribosome biogenesis defects yet still have markedly different downstream consequences and clinical impacts.


Subject(s)
Anemia, Diamond-Blackfan/genetics , RNA Processing, Post-Transcriptional/genetics , Ribosomal Proteins/genetics , Ribosomes/genetics , 5' Untranslated Regions/genetics , Adolescent , Adult , Anemia, Diamond-Blackfan/pathology , Carcinoma, Squamous Cell/genetics , Carcinoma, Squamous Cell/pathology , Child , Erythroid Cells , Female , Humans , Male , Mutation/genetics , RNA Precursors/genetics , RNA, Messenger/genetics , Exome Sequencing
8.
Am J Hum Genet ; 104(4): 758-766, 2019 04 04.
Article in English | MEDLINE | ID: mdl-30929739

ABSTRACT

By using exome sequencing and a gene matching approach, we identified de novo and inherited pathogenic variants in KDM3B in 14 unrelated individuals and three affected parents with varying degrees of intellectual disability (ID) or developmental delay (DD) and short stature. The individuals share additional phenotypic features that include feeding difficulties in infancy, joint hypermobility, and characteristic facial features such as a wide mouth, a pointed chin, long ears, and a low columella. Notably, two individuals developed cancer, acute myeloid leukemia and Hodgkin lymphoma, in childhood. KDM3B encodes for a histone demethylase and is involved in H3K9 demethylation, a crucial part of chromatin modification required for transcriptional regulation. We identified missense and truncating variants, suggesting that KDM3B haploinsufficiency is the underlying mechanism for this syndrome. By using a hybrid facial-recognition model, we show that individuals with a pathogenic variant in KDM3B have a facial gestalt, and that they show significant facial similarity compared to control individuals with ID. In conclusion, pathogenic variants in KDM3B cause a syndrome characterized by ID, short stature, and facial dysmorphism.


Subject(s)
Craniofacial Abnormalities/genetics , Developmental Disabilities/genetics , Dwarfism/genetics , Genetic Variation , Intellectual Disability/genetics , Jumonji Domain-Containing Histone Demethylases/genetics , Musculoskeletal Abnormalities/genetics , Body Height , Child , Exome , Face , Female , Genetic Association Studies , Germ-Line Mutation , Haploinsufficiency , Histones/chemistry , Humans , Male , Mutation, Missense , Phenotype
9.
Int J Cancer ; 145(4): 941-951, 2019 08 15.
Article in English | MEDLINE | ID: mdl-30694527

ABSTRACT

Two percent of patients with Wilms tumors have a positive family history. In many of these cases the genetic cause remains unresolved. By applying germline exome sequencing in two families with two affected individuals with Wilms tumors, we identified truncating mutations in TRIM28. Subsequent mutational screening of germline and tumor DNA of 269 children affected by Wilms tumor was performed, and revealed seven additional individuals with germline truncating mutations, and one individual with a somatic truncating mutation in TRIM28. TRIM28 encodes a complex scaffold protein involved in many different processes, including gene silencing, DNA repair and maintenance of genomic integrity. Expression studies on mRNA and protein level showed reduction of TRIM28, confirming a loss-of-function effect of the mutations identified. The tumors showed an epithelial-type histology that stained negative for TRIM28 by immunohistochemistry. The tumors were bilateral in six patients, and 10/11 tumors are accompanied by perilobar nephrogenic rests. Exome sequencing on eight tumor DNA samples from six individuals showed loss-of-heterozygosity (LOH) of the TRIM28-locus by mitotic recombination in seven tumors, suggesting that TRIM28 functions as a tumor suppressor gene in Wilms tumor development. Additionally, the tumors showed very few mutations in known Wilms tumor driver genes, suggesting that loss of TRIM28 is the main driver of tumorigenesis. In conclusion, we identified heterozygous germline truncating mutations in TRIM28 in 11 children with mainly epithelial-type Wilms tumors, which become homozygous in tumor tissue. These data establish TRIM28 as a novel Wilms tumor predisposition gene, acting as a tumor suppressor gene by LOH.


Subject(s)
Haploinsufficiency/genetics , Tripartite Motif-Containing Protein 28/genetics , Wilms Tumor/genetics , Carcinogenesis/genetics , Child, Preschool , DNA, Neoplasm/genetics , Female , Genes, Wilms Tumor/physiology , Genetic Predisposition to Disease/genetics , Genotype , Germ-Line Mutation/genetics , Heterozygote , Humans , Infant , Kidney Neoplasms/genetics , Loss of Function Mutation/genetics , Loss of Heterozygosity/genetics , Male , Exome Sequencing/methods
10.
Genet Med ; 21(3): 572-579, 2019 03.
Article in English | MEDLINE | ID: mdl-29907796

ABSTRACT

PURPOSE: SMARCB1 encodes a subunit of the SWI/SNF complex involved in chromatin remodeling. Pathogenic variants (PV) in this gene can give rise to three conditions. Heterozygous loss-of-function germline PV cause rhabdoid tumor predisposition syndrome and schwannomatosis. Missense PV and small in-frame deletions in exons 8 and 9 result in Coffin-Siris syndrome, which is characterized by intellectual disability (ID), coarse facial features, and fifth digit anomalies. METHODS: By a gene matching approach, individuals with a similar SMARCB1 PV were identified. Informed consent was obtained and patient data were collected to further establish genotype-phenotype relationship. RESULTS: A recurrent de novo missense PV (c.110G>A;p.Arg37His) in exon 2 of SMARCB1, encoding the DNA-binding domain, was identified in four individuals from different genetic centers. They shared a distinct phenotype consisting of profound ID and hydrocephalus due to choroid plexus hyperplasia. Other shared features include severe neonatal feeding difficulties; congenital heart, kidney, and eye anomalies; obstructive sleep apnea; and anemia. CONCLUSION: The p.Arg37His PV in the DNA-binding domain of SMARCB1 causes a distinctive syndrome, likely through a gain-of-function or dominant-negative effect, which is characterized by severe ID and hydrocephalus resulting from choroid plexus hyperplasia. This report broadens the phenotypic spectrum associated with PV in SMARCB1.


Subject(s)
Hydrocephalus/genetics , Intellectual Disability/genetics , SMARCB1 Protein/genetics , Adolescent , Child , Child, Preschool , Choroid Plexus/physiopathology , Chromatin Assembly and Disassembly/genetics , DNA Helicases/genetics , DNA-Binding Proteins/genetics , Exome , Facies , Female , Genetic Association Studies , Humans , Hyperplasia/genetics , Infant , Male , Nuclear Proteins/genetics , Phenotype , SMARCB1 Protein/physiology , Transcription Factors/genetics
12.
Clin Cancer Res ; 24(7): 1594-1603, 2018 04 01.
Article in English | MEDLINE | ID: mdl-29351919

ABSTRACT

Purpose: In many children with cancer and characteristics suggestive of a genetic predisposition syndrome, the genetic cause is still unknown. We studied the yield of pathogenic mutations by applying whole-exome sequencing on a selected cohort of children with cancer.Experimental Design: To identify mutations in known and novel cancer-predisposing genes, we performed trio-based whole-exome sequencing on germline DNA of 40 selected children and their parents. These children were diagnosed with cancer and had at least one of the following features: (1) intellectual disability and/or congenital anomalies, (2) multiple malignancies, (3) family history of cancer, or (4) an adult type of cancer. We first analyzed the sequence data for germline mutations in 146 known cancer-predisposing genes. If no causative mutation was found, the analysis was extended to the whole exome.Results: Four patients carried causative mutations in a known cancer-predisposing gene: TP53 and DICER1 (n = 3). In another 4 patients, exome sequencing revealed mutations causing syndromes that might have contributed to the malignancy (EP300-based Rubinstein-Taybi syndrome, ARID1A-based Coffin-Siris syndrome, ACTB-based Baraitser-Winter syndrome, and EZH2-based Weaver syndrome). In addition, we identified two genes, KDM3B and TYK2, which are possibly involved in genetic cancer predisposition.Conclusions: In our selected cohort of patients, pathogenic germline mutations causative or likely causative of the cancer phenotype were found in 8 patients, and two possible novel cancer-predisposing genes were identified. Therewith, our study shows the added value of sequencing beyond a cancer gene panel in selected patients, to recognize childhood cancer predisposition. Clin Cancer Res; 24(7); 1594-603. ©2018 AACR.


Subject(s)
Genetic Predisposition to Disease/genetics , Germ-Line Mutation/genetics , Neoplasms/genetics , Abnormalities, Multiple/genetics , Adolescent , Child , Child, Preschool , Congenital Hypothyroidism/genetics , Craniofacial Abnormalities/genetics , Exome/genetics , Face/abnormalities , Female , Genotype , Hand Deformities, Congenital/genetics , Humans , Infant , Intellectual Disability/genetics , Male , Micrognathism/genetics , Neck/abnormalities , Phenotype , Rubinstein-Taybi Syndrome/genetics , Exome Sequencing/methods
13.
Leuk Lymphoma ; 57(7): 1649-56, 2016 07.
Article in English | MEDLINE | ID: mdl-26694256

ABSTRACT

Nodal marginal zone lymphoma (NMZL) is a rare type of B-cell non-Hodgkin lymphoma. This study assessed the clinical features of 56 patients with NMZL in comparison to 46 patients with follicular lymphoma (FL). Patients with NMZL and FL had a largely similar clinical presentation, but patients with FL had a higher disease stage at presentation, more frequent abdominal lymphadenopathy and bone marrow involvement, and showed more common transformation into diffuse large B-cell lymphoma (DLBCL) during the course of disease. Overall survival and event-free survival were similar for patients with NMZL and FL, but factors associated with worse prognosis differed between the two groups. Transformation into DLBCL was associated with a significantly poorer outcome in both groups, but the phenotypes were different: DLBCL arising in FL was mainly of germinal center B-cell phenotype, whereas DLBCL arising in NMZL was mainly of non-germinal center B-cell phenotype.


Subject(s)
Lymphoma, B-Cell, Marginal Zone/diagnosis , Lymphoma, B-Cell, Marginal Zone/mortality , Lymphoma, Follicular/diagnosis , Lymphoma, Follicular/mortality , Adult , Aged , Aged, 80 and over , Cell Transformation, Neoplastic , Female , Humans , Male , Middle Aged , Neoplasm Grading , Neoplasm Metastasis , Neoplasm Staging , Phenotype , Prognosis , Survival Analysis , Symptom Assessment , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...