Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(2): 787-792, 2022 01 18.
Article in English | MEDLINE | ID: mdl-34931815

ABSTRACT

The detection of living organisms at very low concentrations is necessary for the early diagnosis of bacterial infections, but it is still challenging as there is a need for signal amplification. Cell culture, nucleic acid amplification, or nanostructure-based signal enhancement are the most common amplification methods, relying on long, tedious, complex, or expensive procedures. Here, we present a cyanotype-based photochemical amplification reaction enabling the detection of low bacterial concentrations up to a single-cell level. Photocatalysis is induced with visible light and requires bacterial metabolism of iron-based compounds to produce Prussian Blue. Bacterial activity is thus detected through the formation of an observable blue precipitate within 3 h of the reaction, which corresponds to the concentration of living organisms. The short time-to-result and simplicity of the reaction are expected to strongly impact the clinical diagnosis of infectious diseases.


Subject(s)
Bacteria , Communicable Diseases , Humans , Nucleic Acid Amplification Techniques/methods
2.
ACS Sens ; 6(9): 3357-3366, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34410700

ABSTRACT

Sepsis is a serious bloodstream infection where the immunity of the host body is compromised, leading to organ failure and death of the patient. In early sepsis, the concentration of bacteria is very low and the time of diagnosis is very critical since mortality increases exponentially with every hour after infection. Common culture-based methods fail in fast bacteria determination, while recent rapid diagnostic methods are expensive and prone to false positives. In this work, we present a sepsis kit for fast detection of bacteria in whole blood, here achieved by combining selective cell lysis and a sensitive colorimetric approach detecting as low as 103 CFU/mL bacteria in less than 5 h. Homemade selective cell lysis buffer (combination of saponin and sodium cholate) allows fast processing of whole blood in 5 min while maintaining bacteria alive (100% viability). After filtration, retained bacteria on filter paper are incubated under constant illumination with the electrochromic precursors, i.e., ferricyanide and ferric ammonium citrate. Viable bacteria metabolically reduce iron(III) complexes, initiating a photocatalytic cascade toward Prussian blue formation. As a proof of concept, we combine this method with antibiotic susceptibility testing to determine the minimum inhibitory concentration (MIC) using two antibiotics (ampicillin and gentamicin). Although this kit is used to demonstrate its applicability to sepsis, this approach is expected to impact other key sectors such as hygiene evaluation, microbial contaminated food/beverage, or UTI, among others.


Subject(s)
Ferric Compounds , Sepsis , Bacteria , Humans , Sepsis/diagnosis
3.
Ultrason Sonochem ; 70: 105317, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32891882

ABSTRACT

In healthcare facilities, environmental microbes are responsible for numerous infections leading to patient's health complications and even death. The detection of the pathogens present on contaminated surfaces is crucial, although not always possible with current microbial detection technologies requiring sample collection and transfer to the laboratory. Based on a simple sonochemical coating process, smart hospital fabrics with the capacity to detect live bacteria by a simple change of colour are presented here. Prussian Blue nanoparticles (PB-NPs) are sonochemically coated on polyester-cotton textiles in a single-step requiring 15 min. The presence of PB-NPs confers the textile with an intensive blue colour and with bacterial-sensing capacity. Live bacteria in the textile metabolize PB-NPs and reduce them to colourless Prussian White (PW), enabling in situ detection of bacterial presence in less than 6 h with the bare eye (complete colour change requires 40 h). The smart textile is sensitive to both Gram-positive and Gram-negative bacteria, responsible for most nosocomial infections. The redox reaction is completely reversible and the textile recovers its initial blue colour by re-oxidation with environmental oxygen, enabling its re-use. Due to its simplicity and versatility, the current technology can be employed in different types of materials for control and prevention of microbial infections in hospitals, industries, schools and at home.


Subject(s)
Ferrocyanides/chemistry , Gram-Negative Bacteria/isolation & purification , Gram-Positive Bacteria/isolation & purification , Sonication/methods , Textiles , Color , Hospitals
4.
Lab Chip ; 19(12): 2081-2088, 2019 06 11.
Article in English | MEDLINE | ID: mdl-31114831

ABSTRACT

In multiplexed analysis, lab on a chip (LoC) devices are advantageous due to the low sample and reagent volumes required. Although optical detection is preferred for providing high sensitivity in a contactless configuration, multiplexed optical LoCs are limited by the technological complexity for integrating multiple light sources and detectors in a single device. To address this issue, we present a microfluidic-controlled optical router that enables measurement in four individual optical channels using a single light source and detector, and without movable parts. The optofluidic device is entirely fabricated in polydimethylsiloxane (PDMS) by soft-lithography, compatible with standard microfabrication technologies, enabling monolithic integration in LoCs. In the device, in-coupled light from an optical fiber is collimated by a polymeric micro-lens and guided through a set of four sequentially connected micro-chambers. When a micro-chamber is filled with water, light is transmitted to the next one. If it is empty of liquid, however, total internal reflection (TIR) occurs at the PDMS-air interface, re-directing the light to the output optical fiber. The router presents high performance, with low cross-talk (<2%) and high switching frequencies (up to 0.343 ± 0.006 Hz), and provides a stable signal for up to 91% of the switching time. With this miniaturized, low-cost, simple and robust design, we expect the current technology to be integrated in the new generation of multiplexed photonic LoCs for biomarker analysis, even at the point of care.


Subject(s)
Lab-On-A-Chip Devices , Microfluidic Analytical Techniques , Optical Fibers , Equipment Design , Microfluidic Analytical Techniques/instrumentation
5.
J Colloid Interface Sci ; 511: 251-258, 2018 Feb 01.
Article in English | MEDLINE | ID: mdl-29028576

ABSTRACT

Materials science offers new perspectives in the clinical analysis of antimicrobial sensitivity. However, a biomaterial with the capacity to respond to living bacteria has not been developed to date. We present an electrochromic iron(III)-complexed alginate hydrogel sensitive to bacterial metabolism, here applied to fast antibiotic-susceptibility determination. Bacteria under evaluation are entrapped -and pre-concentrated- in the hydrogel matrix by oxidation of iron (II) ions to iron (III) and in situ formation of the alginate hydrogel in less than 2min and in soft experimental conditions (i.e. room temperature, pH 7, aqueous solution). After incubation with the antibiotic (10min), ferricyanide is added to the biomaterial. Bacteria resistant to the antibiotic dose remain alive and reduce ferricyanide to ferrocyanide, which reacts with the iron (III) ions in the hydrogel to produce Prussian Blue molecules. For a bacterial concentration above 107 colony forming units per mL colour development is detectable with the bare eye in less than 20min. The simplicity, sensitivity, low-cost and short response time of the biomaterial and the assay envisages a high impact of these approaches on sensitive sectors such as public health system, food and beverage industries or environmental monitoring.


Subject(s)
Alginates/chemistry , Anti-Bacterial Agents , Escherichia coli/growth & development , Ferric Compounds , Hydrogels , Staphylococcus aureus/growth & development , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Ferric Compounds/chemical synthesis , Ferric Compounds/chemistry , Ferric Compounds/pharmacology , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Hydrogels/chemical synthesis , Hydrogels/chemistry , Hydrogels/pharmacology , Microbial Sensitivity Tests/methods , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...