Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
1.
J Nucl Med ; 2024 May 09.
Article in English | MEDLINE | ID: mdl-38724280

ABSTRACT

Angiogenesis is an essential part of the cardiac repair process after myocardial infarction, but its spatiotemporal dynamics remain to be fully deciphered.68Ga-NODAGA-Arg-Gly-Asp (RGD) is a PET tracer targeting αvß3 integrin expression, which is a marker of angiogenesis. Methods: In this prospective single-center trial, we aimed to monitor angiogenesis through myocardial integrin αvß3 expression in 20 patients with ST-segment elevation myocardial infarction (STEMI). In addition, the correlations between the expression levels of myocardial αvß3 integrin and the subsequent changes in 82Rb PET/CT parameters, including rest and stress myocardial blood flow (MBF), myocardial flow reserve (MFR), and wall motion abnormalities, were assessed. The patients underwent 68Ga-NODAGA-RGD PET/CT and rest and stress 82Rb-PET/CT at 1 wk, 1 mo, and 3 mo after STEMI. To assess 68Ga-NODAGA-RGD uptake, the summed rest 82Rb and 68Ga-NODAGA-RGD images were coregistered, and segmental SUVs were calculated (RGD SUV). Results: At 1 wk after STEMI, 19 participants (95%) presented increased 68Ga-NODAGA-RGD uptake in the infarcted myocardium. Seventeen participants completed the full imaging series. The values of the RGD SUV in the infarcted myocardium were stable 1 mo after STEMI (1 wk vs. 1 mo, 1.47 g/mL [interquartile range (IQR), 1.37-1.64 g/mL] vs. 1.47 g/mL [IQR, 1.30-1.66 g/mL]; P = 0.9), followed by a significant partial decrease at 3 mo (1.32 g/mL [IQR, 1.12-1.71 g/mL]; P = 0.011 vs. 1 wk and 0.018 vs. 1 mo). In segment-based analysis, positive correlations were found between RGD SUV at 1 wk and the subsequent changes in stress MBF (Spearman ρ: r = 0.17, P = 0.0033) and MFR (Spearman ρ: r = 0.31, P < 0.0001) at 1 mo. A negative correlation was found between RGD SUV at 1 wk and the subsequent changes in wall motion abnormalities at 3 mo (Spearman ρ: r = -0.12, P = 0.035). Conclusion: The present study found that αvß3 integrin expression is significantly increased in the infarcted myocardium 1 wk after STEMI. This expression remains stable after 1 mo and partially decreases after 3 mo. Initial αvß3 integrin expression at 1 wk is significantly weakly correlated with subsequent improvements in stress MBF, MFR, and wall motion analysis.

2.
Sci Rep ; 14(1): 9644, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671059

ABSTRACT

Assessing the individual risk of Major Adverse Cardiac Events (MACE) is of major importance as cardiovascular diseases remain the leading cause of death worldwide. Quantitative Myocardial Perfusion Imaging (MPI) parameters such as stress Myocardial Blood Flow (sMBF) or Myocardial Flow Reserve (MFR) constitutes the gold standard for prognosis assessment. We propose a systematic investigation of the value of Artificial Intelligence (AI) to leverage [ 82 Rb] Silicon PhotoMultiplier (SiPM) PET MPI for MACE prediction. We establish a general pipeline for AI model validation to assess and compare the performance of global (i.e. average of the entire MPI signal), regional (17 segments), radiomics and Convolutional Neural Network (CNN) models leveraging various MPI signals on a dataset of 234 patients. Results showed that all regional AI models significantly outperformed the global model ( p < 0.001 ), where the best AUC of 73.9% (CI 72.5-75.3) was obtained with a CNN model. A regional AI model based on MBF averages from 17 segments fed to a Logistic Regression (LR) constituted an excellent trade-off between model simplicity and performance, achieving an AUC of 73.4% (CI 72.3-74.7). A radiomics model based on intensity features revealed that the global average was the least important feature when compared to other aggregations of the MPI signal over the myocardium. We conclude that AI models can allow better personalized prognosis assessment for MACE.


Subject(s)
Myocardial Perfusion Imaging , Positron-Emission Tomography , Humans , Myocardial Perfusion Imaging/methods , Female , Male , Positron-Emission Tomography/methods , Middle Aged , Aged , Artificial Intelligence , Rubidium Radioisotopes , Prognosis , Neural Networks, Computer , Cardiovascular Diseases/diagnostic imaging , Cardiovascular Diseases/diagnosis , Coronary Circulation
4.
J Nucl Med ; 65(1): 132-138, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-37973184

ABSTRACT

[68Ga]Ga-NODAGA-Arg-Gly-Asp (RGD) is a PET tracer targeting αvß3 integrin, which is upregulated during angiogenesis soon after acute myocardial infarction (AMI). We prospectively evaluated determinants of myocardial uptake of [68Ga]Ga-NODAGA-RGD and its associations with left ventricular (LV) function in patients after AMI. Methods: Myocardial blood flow and [68Ga]Ga-NODAGA-RGD uptake (60 min after injection) were evaluated by PET in 31 patients 7.7 ± 3.8 d after primary percutaneous coronary intervention for ST-elevation AMI. Transthoracic echocardiography of LV function was performed on the day of PET and at the 6-mo follow-up. Results: PET images showed increased uptake of [68Ga]Ga-NODAGA-RGD in the ischemic area at risk (AAR), predominantly in injured myocardial segments. The SUV in the segment with the highest uptake (SUVmax) in the ischemic AAR was higher than the SUVmean of the remote myocardium (0.73 ± 0.16 vs. 0.51 ± 0.11, P < 0.001). Multivariable predictors of [68Ga]Ga-NODAGA-RGD uptake in the AAR included high peak N-terminal pro-B-type natriuretic peptide (P < 0.001), low LV ejection fraction, low global longitudinal strain (P = 0.01), and low longitudinal strain in the AAR (P = 0.01). [68Ga]Ga-NODAGA-RGD uptake corrected for myocardial blood flow and perfusable tissue fraction in the AAR predicted improvement in global longitudinal strain at follow-up (P = 0.002), independent of peak troponin, N-terminal pro-B-type natriuretic peptide, and LV ejection fraction. Conclusion: [68Ga]Ga-NODAGA-RGD uptake shows increased αvß3 integrin expression in the ischemic AAR early after AMI that is associated with regional and global systolic dysfunction, as well as increased LV filling pressure. Increased [68Ga]Ga-NODAGA-RGD uptake predicts improvement of global LV function 6 mo after AMI.


Subject(s)
Integrin beta3 , Myocardial Infarction , Humans , Natriuretic Peptide, Brain , Positron-Emission Tomography/methods , Gallium Radioisotopes , Myocardial Infarction/diagnostic imaging , Myocardium/metabolism , Oligopeptides , Integrin alphaVbeta3/metabolism
5.
Eur J Hybrid Imaging ; 7(1): 20, 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37926793

ABSTRACT

BACKGROUND: Small-vessel disease (SVD) plays a crucial role in cardiac and brain ischemia, but little is known about potential interrelation between both. We retrospectively evaluated 370 patients, aiming at assessing the interrelation between cardiac and brain SVD by using quantitative 82Rb cardiac PET/CT and brain MRI. RESULTS: In our population of 370 patients, 176 had normal myocardial perfusion, 38 had pure cardiac SVD and 156 had obstructive coronary artery disease. All underwent both a cardiac 82Rb PET/CT and a brain 1.5T or 3T MRI. Left-ventricle myocardial blood flow (LV-MBF) and flow reserve (LV-MFR) were recorded from 82Rb PET/CT, while Fazekas score, white matter lesion (WMab) volume, deep gray matter lesion (GMab) volume, and brain morphometry (for z-score calculation) using the MorphoBox research application were derived from MRI. Groups were compared with Kruskal-Wallis test, and the potential interrelation between heart and brain SVD markers was assessed using Pearson's correlation coefficient. Patients with cardiac SVD had lower stress LV-MBF and MFR (P < 0.001) than patients with normal myocardial perfusion; Fazekas scores and WMab volumes were similar in those two groups (P > 0.45). In patients with cardiac SVD only, higher rest LV-MBF was associated with a lower left-putamen (rho = - 0.62, P = 0.033), right-thalamus (rho = 0.64, P = 0.026), and right-pallidum (rho = 0.60, P = 0.039) z-scores and with a higher GMab volume. Lower stress LV-MBF was associated with lower left-caudate z-score (rho = 0.69, P = 0.014), while lower LV-MFR was associated with lower left (rho = 0.75, P = 0.005)- and right (rho = 0.59, P = 0.045)-putamen z-scores, as well as higher right-thalamus GMab volume (rho = - 0.72, P = 0.009). CONCLUSION: Significant interrelations between cardiac and cerebral SVD markers were found, especially regarding deep gray matter alterations, which supports the hypothesis of SVD as a systemic disease.

6.
Clin Nucl Med ; 48(12): e611-e613, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37883135

ABSTRACT

ABSTRACT: Bone scintigraphy is recognized as a noninvasive alternative to endomyocardial biopsy for the diagnostic of wild-type (wATTR) and hereditary ATTR amyloidosis (hATTR). Light chain amyloidosis (AL), Randall-type monoclonal immunoglobulin deposition disease , sarcoidosis, hemochromatosis, Fabry disease, and mucopolysaccharidoses are differential diagnosis of ATTR amyloidosis. Bone scintigraphy allows visualization of extracardiac involvements of AL amyloidosis: pleural, retroperitoneal, liver, spleen, and soft tissue. We report the case of a patient who underwent bone scintigraphy for suspected ATTR amyloidosis. Bone scan showed cardiac (Perugini score 2), hepatic, and renal hyperfixation. A cardiac biopsy demonstrated a Randall-type deposit, without amyloid deposit.


Subject(s)
Amyloidosis , Cardiomyopathies , Heart Diseases , Multiple Myeloma , Humans , Tomography, X-Ray Computed , Amyloidosis/diagnostic imaging , Radionuclide Imaging , Immunoglobulins
7.
EJNMMI Phys ; 10(1): 45, 2023 Jul 31.
Article in English | MEDLINE | ID: mdl-37522931

ABSTRACT

PURPOSE: The main objective of this study was to evaluate the ability of a large field Cadmium Zinc Telluride (CZT) camera to estimate thyroid uptake (TU) on single photon emission computed tomography (SPECT) images with and without attenuation correction (Tomo-AC and Tomo-NoAC) compared with Planar acquisition in a series of 23 consecutive patients. The secondary objective was to determine radiation doses for the tracer administration and for the additional Computed Tomography (CT) scan. METHODS: Cross-calibration factors were determined using a thyroid phantom, for Planar, Tomo-AC and Tomo-NoAC images. Then Planar and SPECT/CT acquisitions centered on the thyroid were performed on 5 anthropomorphic phantoms with activity ranging from 0.4 to 10 MBq, and 23 patients after administration of 79.2 ± 3.7 MBq of [99mTc]-pertechnetate. We estimated the absolute thyroid activity (AThA) for the anthropomorphic phantoms and the TU for the patients. Radiation dose was also determined using International Commission on Radiological Protection (ICRP) reports and VirtualDoseTMCT software. RESULTS: Cross-calibration factors were 66.2 ± 4.9, 60.7 ± 0.7 and 26.5 ± 0.3 counts/(MBq s), respectively, for Planar, Tomo-AC and Tomo-NoAC images. Theoretical and estimated AThA for Planar, Tomo-AC and Tomo-NoAC images were statistically highly correlated (r < 0.99; P < 10-4) and the average of the relative percentage difference between theoretical and estimated AThA were (8.6 ± 17.8), (- 1.3 ± 5.2) and (12.8 ± 5.7) %, respectively. Comparisons between TU based on different pairs of images (Planar vs Tomo-AC, Planar vs Tomo-NoAC and Tomo-AC vs Tomo-NoAC) showed statistically significant correlation (r = 0.972, 0.961 and 0.935, respectively; P < 10-3). Effective and thyroid absorbed doses were, respectively (0.34CT + 0.95NM) mSv, and (3.88CT + 1.74NM) mGy. CONCLUSION: AThA estimation using Planar and SPECT/CT acquisitions on a new generation of CZT large-field cameras is feasible. In addition, TU on SPECT/CT was as accurate as conventional planar acquisition, but the CT induced additional thyroid exposure. Trial registration Name of the registry: Thyroid Uptake Quantification on a New Generation of Gamma Camera (QUANTHYC). TRIAL NUMBER: NCT05049551. Registered September 20, 2021-Retrospectively registered, https://clinicaltrials.gov/ct2/show/record/NCT05049551?cntry=MC&draw=2&rank=4 .

8.
CPT Pharmacometrics Syst Pharmacol ; 12(8): 1170-1181, 2023 08.
Article in English | MEDLINE | ID: mdl-37328961

ABSTRACT

The development of immune checkpoint inhibitors (ICIs) has revolutionized cancer therapy but only a fraction of patients benefits from this therapy. Model-informed drug development can be used to assess prognostic and predictive clinical factors or biomarkers associated with treatment response. Most pharmacometric models have thus far been developed using data from randomized clinical trials, and further studies are needed to translate their findings into the real-world setting. We developed a tumor growth inhibition model based on real-world clinical and imaging data in a population of 91 advanced melanoma patients receiving ICIs (i.e., ipilimumab, nivolumab, and pembrolizumab). Drug effect was modeled as an ON/OFF treatment effect, with a tumor killing rate constant identical for the three drugs. Significant and clinically relevant covariate effects of albumin, neutrophil to lymphocyte ratio, and Eastern Cooperative Oncology Group (ECOG) performance status were identified on the baseline tumor volume parameter, as well as NRAS mutation on tumor growth rate constant using standard pharmacometric approaches. In a population subgroup (n = 38), we had the opportunity to conduct an exploratory analysis of image-based covariates (i.e., radiomics features), by combining machine learning and conventional pharmacometric covariate selection approaches. Overall, we demonstrated an innovative pipeline for longitudinal analyses of clinical and imaging RWD with a high-dimensional covariate selection method that enabled the identification of factors associated with tumor dynamics. This study also provides a proof of concept for using radiomics features as model covariates.


Subject(s)
Electronic Health Records , Melanoma , Humans , Melanoma/drug therapy , Melanoma/pathology , Nivolumab , Ipilimumab , Immunotherapy/methods
9.
JCO Clin Cancer Inform ; 7: e2200126, 2023 05.
Article in English | MEDLINE | ID: mdl-37146261

ABSTRACT

PURPOSE: A semiautomated pipeline for the collection and curation of free-text and imaging real-world data (RWD) was developed to quantify cancer treatment outcomes in large-scale retrospective real-world studies. The objectives of this article are to illustrate the challenges of RWD extraction, to demonstrate approaches for quality assurance, and to showcase the potential of RWD for precision oncology. METHODS: We collected data from patients with advanced melanoma receiving immune checkpoint inhibitors at the Lausanne University Hospital. Cohort selection relied on semantically annotated electronic health records and was validated using process mining. The selected imaging examinations were segmented using an automatic commercial software prototype. A postprocessing algorithm enabled longitudinal lesion identification across imaging time points and consensus malignancy status prediction. Resulting data quality was evaluated against expert-annotated ground-truth and clinical outcomes obtained from radiology reports. RESULTS: The cohort included 108 patients with melanoma and 465 imaging examinations (median, 3; range, 1-15 per patient). Process mining was used to assess clinical data quality and revealed the diversity of care pathways encountered in a real-world setting. Longitudinal postprocessing greatly improved the consistency of image-derived data compared with single time point segmentation results (classification precision increased from 53% to 86%). Image-derived progression-free survival resulting from postprocessing was comparable with the manually curated clinical reference (median survival of 286 v 336 days, P = .89). CONCLUSION: We presented a general pipeline for the collection and curation of text- and image-based RWD, together with specific strategies to improve reliability. We showed that the resulting disease progression measures match reference clinical assessments at the cohort level, indicating that this strategy has the potential to unlock large amounts of actionable retrospective real-world evidence from clinical records.


Subject(s)
Melanoma , Precision Medicine , Humans , Retrospective Studies , Reproducibility of Results , Melanoma/diagnostic imaging , Multimodal Imaging
10.
Pediatr Radiol ; 53(9): 1911-1918, 2023 08.
Article in English | MEDLINE | ID: mdl-37171639

ABSTRACT

BACKGROUND: One of the main limitations of 99mtechnetium-dimercaptosuccinic acid (DMSA) scan is the long acquisition time. OBJECTIVE: To evaluate the feasibility of short DMSA scan acquisition times using a cadmium-zinc-telluride-based single-photon emission computed tomography (SPECT) system in children. MATERIALS AND METHODS: The data of 27 children (median age: 4 years; 16 girls) who underwent DMSA SPECT were retrospectively analyzed. Both planar and SPECT DMSA were performed. SPECT images were analyzed using coronal-simulated planar two-dimensional images. A reduction in SPECT acquisition time was simulated to provide 4 series (SPECT-15 min, SPECT-10 min, SPECT-5 min and SPECT-2.5 min). A direct comparison of the planar and SPECT series was performed, including semi-quantification reproducibility, image quality (mean quality score on a scale of 0 to 2) and inter- and intra-observer reproducibility of the scintigraphic patterns. RESULTS: The overall image quality score (± standard deviation) was 1.3 (± 0.6) for the planar data set, 1.6 (± 0.5) for the SPECT-15 min data set, 1.4 (± 0.5) for the SPECT-10 min data set, 1.0 (± 0.5) for the SPECT-5 min data set and 0.6 (± 0.6) for the SPECT-2.5 min data set. Median Kappa coefficients for inter-observer agreement between planar and SPECT images were greater than 0.83 for all series and all readers except one reader for the SPECT-2.5 min series (median Kappa coefficient = 0.77). CONCLUSION: Shortening SPECT acquisitions to 5 min is feasible with minimal impact on images in terms of quality and reproducibility.


Subject(s)
Technetium Tc 99m Dimercaptosuccinic Acid , Tomography, Emission-Computed, Single-Photon , Child , Female , Humans , Child, Preschool , Reproducibility of Results , Retrospective Studies , Tomography, Emission-Computed, Single-Photon/methods
12.
Eur J Hybrid Imaging ; 7(1): 3, 2023 Feb 01.
Article in English | MEDLINE | ID: mdl-36720731

ABSTRACT

BACKGROUND: The primary aims of this study were to compare in patients with esophageal or esophagogastric junction cancers the potential of 68Ga-NODAGA-RGD PET/CT with that of 18F-FDG PET/CT regarding tumoral uptake and distribution, as well as histopathologic examination. METHODS: Ten 68Ga-NODAGA-RGD and ten 18F-FDG PET/CT were performed in nine prospectively included participants (1 woman; aged 58 ± 8.4 y, range 40-69 y). Maximum SUV (SUVmax) and metabolic tumor volumes (MTV) were calculated. The Mann-Whitney U test and Spearman correlation analysis (ρ) were used. RESULTS: 68Ga-NODAGA-RGD PET/CT detected positive uptake in 10 primary sites (8 for primary tumors and 2 for local relapse suspicion), 6 lymph nodes and 3 skeletal sites. 18F-FDG PET/CT detected positive uptake in the same sites but also in 16 additional lymph nodes and 1 adrenal gland. On a lesion-based analysis, SUVmax of 18F-FDG was significantly higher than those of 68Ga-NODAGA-RGD (4.9 [3.7-11.3] vs. 3.2 [2.6-4.2] g/mL, p = 0.014). Only one participant showed a higher SUVmax in an osseous metastasis with 68Ga-NODAGA-RGD as compared to 18F-FDG (6.6 vs. 3.9 g/mL). Correlation analysis showed positive correlation between 18F-FDG and 68Ga-NODAGA-RGD PET parameters (ρ = 0.56, p = 0.012 for SUVmax, ρ = 0.78, p < 0.001 for lesion-to-background ratios and ρ = 0.58, p = 0.024 for MTV). We observed that 18F-FDG uptake was homogenous inside all the confirmed primary sites (n = 9). In contrast, 68Ga-NODAGA-RGD PET showed more heterogenous uptake in 6 out of the 9 confirmed primary sites (67%), seen mostly in the periphery of the tumor in 5 out of the 9 confirmed primary sites (56%), and showed slight extensions into perilesional structures in 5 out of the 9 confirmed primary sites (56%). CONCLUSIONS: In conclusion, 68Ga-NODAGA-RGD has lower potential in the detection of esophageal or esophagogastric junction malignancies compared to 18F-FDG. However, the results suggest that PET imaging of integrin αvß3 expression may provide complementary information and could aid in tumor diversity and delineation. TRIAL REGISTRATION: Trial registration: NCT02666547. Registered January 28, 2016-Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT02666547 .

13.
J Nucl Cardiol ; 30(4): 1385-1395, 2023 08.
Article in English | MEDLINE | ID: mdl-36574175

ABSTRACT

BACKGROUND: The most reliable quantitative variable on Rubidium-82 (82Rb) cardiac PET/CT for predicting major adverse cardiovascular events (MACE) has not been characterized with low-dose silicon photomultipliers (SiPM) technology, which allows halving injected activity and radiation dose delivering less than 1.0 mSv in a 70-kg individual. METHODS AND RESULTS: We prospectively enrolled 234 consecutive participants with suspected myocardial ischemia. Participants underwent 82Rb cardiac SiPM PET/CT (5 MBq/kg) and were followed up for MACE over 652 days (interquartile range 559-751 days). For each participant, global stress myocardial blood flow (stress MBF), global myocardial flow reserve (MFR), and regional severely reduced myocardial flow capacity (MFCsevere) were measured. The Youden index was used to select optimal thresholds. In multivariate analysis after adjustments for clinical risk factors, reduced global stress MBF < 1.94 ml/min/g, reduced global MFR < 1.98, and regional MFCsevere > 3.2% of left ventricle emerged all as independent predictors of MACE (HR 4.5, 3.1, and 3.67, respectively, p < 0.001). However, only reduced global stress MBF remained an independent prognostic factor for MACE after adjusting for clinical risk factors and the combined use of global stress MBF, global MFR, and regional MFCsevere impairments (HR 2.81, p = 0.027). CONCLUSION: Using the latest SiPM PET technology with low-dose 82Rb halving the standard activity to deliver < 1 mSv for a 70-kg patient, impaired global stress MBF, global MFR, and regional MFC were powerful predictors of cardiovascular events, outperforming traditional cardiovascular risk factors. However, only reduced global stress MBF independently predicted MACE, being superior to global MFR and regional MFC impairments.


Subject(s)
Coronary Artery Disease , Myocardial Ischemia , Myocardial Perfusion Imaging , Humans , Positron Emission Tomography Computed Tomography , Prognosis , Coronary Circulation/physiology , Positron-Emission Tomography/methods , Coronary Artery Disease/diagnostic imaging , Myocardium , Rubidium Radioisotopes , Myocardial Perfusion Imaging/methods
14.
Mol Imaging Radionucl Ther ; 31(2): 166-168, 2022 Jun 27.
Article in English | MEDLINE | ID: mdl-35771089

ABSTRACT

A 54-year-old man, with previous history of neurogenic heterotopic ossification (HO) in muscles around the left hip following a spinal cord injury ten months earlier, was referred to our nuclear medicine center for an 18fluorine-fluorodeoxyglucose (18F-FDG) positron emission tomography/computed tomography (PET/CT) to rule out a spondylodiscitis. No sign of spondylodiscitis was found on 18F-FDG PET/CT, but images revealed an increased 18F-FDG uptake in HO areas, matching with ongoing osteoblastic activity on a following bone scan.

15.
Front Med (Lausanne) ; 9: 887508, 2022.
Article in English | MEDLINE | ID: mdl-35602497

ABSTRACT

Studies using arginine-glycine-aspartate (RGD)-PET agents in cardiovascular diseases have been recently published. The aim of this systematic review was to perform an updated, evidence-based summary about the role of RGD-based PET agents in patients with cardiovascular diseases to better address future research in this setting. Original articles within the field of interest reporting the role of RGD-based PET agents in patients with cardiovascular diseases were eligible for inclusion in this systematic review. A systematic literature search of PubMed/MEDLINE and Cochrane library databases was performed until October 26, 2021. Literature shows an increasing role of RGD-based PET agents in patients with cardiovascular diseases. Overall, two main topics emerged: the infarcted myocardium and atherosclerosis. The existing studies support that αvß3 integrin expression in the infarcted myocardium is well evident in RGD PET/CT scans. RGD-based PET radiotracers accumulate at the site of infarction as early as 3 days and seem to be peaking at 1-3 weeks post myocardial infarction before decreasing, but only 1 study assessed serial changes of myocardial RGD-based PET uptake after ischemic events. RGD-based PET uptake in large vessels showed correlation with CT plaque burden, and increased signal was found in patients with prior cardiovascular events. In human atherosclerotic carotid plaques, increased PET signal was observed in stenotic compared with non-stenotic areas based on MR or CT angiography data. Histopathological analysis found a co-localization between tracer accumulation and areas of αvß3 expression. Promising applications using RGD-based PET agents are emerging, such as prediction of remodeling processes in the infarcted myocardium or detection of active atherosclerosis, with potentially significant clinical impact.

16.
EJNMMI Res ; 11(1): 71, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34390409

ABSTRACT

BACKGROUND: Integrin alpha-V-beta-3 (αvß3) pathway is involved in intraplaque angiogenesis and inflammation and represents a promising target for molecular imaging in cardiovascular diseases such as atherosclerosis. The aim of this study was to assess the clinical correlates of arterial wall accumulation of 68Ga-NODAGA-RGD, a specific αvß3 integrin ligand for PET. MATERIALS AND METHODS: The data of 44 patients who underwent 68Ga-NODAGA-RGD PET/CT scans were retrospectively analyzed. Tracer accumulation in the vessel wall of major arteries was analyzed semi-quantitatively by blood-pool-corrected target-to-background ratios. Tracer uptake was compared with clinically documented atherosclerotic cardiovascular disease, cardiovascular risk factors and calcified plaque burden. Data were compared using the Mann-Whitney U test, Pearson correlation and Spearman correlation. RESULTS: 68Ga-NODAGA-RGD arterial uptake was significantly higher in patients with previous clinically documented atherosclerotic cardiovascular disease (mean TBR 2.44 [2.03-2.55] vs. 1.81 [1.56-1.96], p = 0.001) and showed a significant correlation with prior cardiovascular or cerebrovascular event (r = 0.33, p = 0.027), BMI (ρ = 0.38, p = 0.01), plaque burden (ρ = 0.31, p = 0.04) and hypercholesterolemia (r = 0.31, p = 0.04). CONCLUSIONS: 68Ga-NODAGA-RGD holds promise as a non-invasive marker of disease activity in atherosclerosis, providing information about intraplaque angiogenesis.

17.
Clin Nucl Med ; 46(6): e317-e324, 2021 06 01.
Article in English | MEDLINE | ID: mdl-33630808

ABSTRACT

PURPOSE: Physiological myocardial accumulation of FDG impairs the diagnosis of inflammatory/infectious or tumoral myocardial detection by FDG PET/CT. We prospectively evaluated the addition, 3 hours before imaging, of an intravenous 100-mL lipid emulsion infusion (Intralipid) to a high-fat, low-carbohydrate diet (HFLCD) for at least 2 meals followed by a fast of at least 6 to 12 hours in patients referred for the diagnosis of myocardial inflammation, endocarditis, cardiac or paracardiac masses, intracardiac device, or prosthetic valve infections. METHODS: Data of 58 patients consecutively included (28 Intralipid patients, 30 controls with HFLCD alone) were compared. FDG uptake in normal myocardium was scored from 0 (complete myocardial suppression) to 3 (high diffuse uptake). Myocardial maximal, peak, and mean SUV and the rate of interpretable images according to the clinical indication were measured. RESULTS: Compared with controls, Intralipid infusion significantly improved the rate of score 0 (89% vs 63%, P = 0.021), of interpretable images according to the clinical indication (100% vs 72%, P = 0.0047) and decreased all myocardial SUV values (eg, SUVmax median, 1.9 [interquartile range, 1.7-2.5] vs 3.1 [interquartile range, 2.3-4.1]; P < 0.001). CONCLUSIONS: A lipid emulsion infusion in addition to HFLCD better suppresses cardiac glucose metabolism than HFLCD alone.


Subject(s)
Fat Emulsions, Intravenous/pharmacology , Fluorodeoxyglucose F18 , Glucose/metabolism , Heart/drug effects , Heart/diagnostic imaging , Myocardium/metabolism , Positron Emission Tomography Computed Tomography , Adult , Biological Transport/drug effects , Female , Fluorodeoxyglucose F18/metabolism , Humans , Male , Middle Aged
19.
Eur J Nucl Med Mol Imaging ; 48(1): 260-268, 2021 01.
Article in English | MEDLINE | ID: mdl-32712702

ABSTRACT

PURPOSE: [18F]-2-Fluoro-2-deoxy-D-glucose PET/CT (FDG PET/CT) is a sensitive and quantitative technic for detecting inflammatory process. Glucose uptake is correlated with an increased anaerobic glycolysis seen in activated inflammatory cells such as monocytes, lymphocytes, and granulocytes. The aim of the study was to assess the inflammatory status at the presumed peak of the inflammatory phase in non-critically ill patients requiring admission for COVID-19. METHODS: Patients admitted with COVID-19 were prospectively enrolled. FDG PET/CT was performed from day 6 to day 14 of the onset of symptoms. Depending on FDG PET/CT findings, patients' profiles were classified as "inflammatory" or "low inflammatory." FDG PET/CT data were compared with chest CT evolution and short-term clinical outcome. All inflammatory sites were reported to screen potential extra-pulmonary tropism. RESULTS: Thirteen patients were included. Maximum standardized uptake values ranged from 4.7 to 16.3 in lungs. All patients demonstrated increased mediastinal lymph nodes glucose uptake. Three patients (23%) presented mild nasopharyngeal, two patients (15%) bone marrow, and five patients (38%) splenic mild increase in glucose uptake. No patient had significant digestive focal or segmental glucose uptake. There was no significant physiological myocardial glucose uptake in all patients except one. There was no correlation between PET lung inflammatory status and chest CT evolution or short-term clinical outcome. CONCLUSION: Inflammatory process at the presumed peak of the inflammatory phase in COVID-19 patients is obvious in FDG PET/CT scans. Glucose uptake is heterogeneous and typically focused on lungs. TRIAL REGISTRATION: NCT04441489. Registered 22 June 2020 (retrospectively registered).


Subject(s)
COVID-19/diagnostic imaging , Fluorodeoxyglucose F18 , Positron Emission Tomography Computed Tomography , Radiopharmaceuticals , Aged , Aged, 80 and over , COVID-19/classification , COVID-19/therapy , Female , Heart/diagnostic imaging , Humans , Inflammation/diagnostic imaging , Lung/diagnostic imaging , Lymph Nodes/diagnostic imaging , Male , Middle Aged , Treatment Outcome
20.
Clin Nucl Med ; 46(5): e253-e255, 2021 May 01.
Article in English | MEDLINE | ID: mdl-33323726

ABSTRACT

ABSTRACT: We report the case of a 60-year-old woman who underwent 18F-FDG PET/CT to evaluate a metastatic breast carcinoma. Follow-up 18F-FDG PET/CT showed progressive disease with 18F-FDG increased in primary tumor, axillary lymph nodes, and pleural and bone diffuse metastases but also a concomitant uptake in multiples joints. The anatomopathological analysis from skin biopsy revealed a multicentric reticulohistiocytosis, considered paraneoplastic in the context. Second follow-up PET/CT after treatment showed a decrease of 18F-FDG uptake in previously affected joints, consistent with the symptoms evolution. 18F-FDG PET/CT could be helpful in the detection and the evaluation of such rare systemic disorder.


Subject(s)
Breast Neoplasms/complications , Fluorodeoxyglucose F18 , Histiocytosis, Non-Langerhans-Cell/complications , Histiocytosis, Non-Langerhans-Cell/diagnostic imaging , Positron Emission Tomography Computed Tomography , Female , Follow-Up Studies , Histiocytosis, Non-Langerhans-Cell/pathology , Histiocytosis, Non-Langerhans-Cell/therapy , Humans , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...