Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cell ; 143(4): 628-38, 2010 Nov 12.
Article in English | MEDLINE | ID: mdl-21074052

ABSTRACT

Worldwide, acute, and chronic pain affects 20% of the adult population and represents an enormous financial and emotional burden. Using genome-wide neuronal-specific RNAi knockdown in Drosophila, we report a global screen for an innate behavior and identify hundreds of genes implicated in heat nociception, including the α2δ family calcium channel subunit straightjacket (stj). Mice mutant for the stj ortholog CACNA2D3 (α2δ3) also exhibit impaired behavioral heat pain sensitivity. In addition, in humans, α2δ3 SNP variants associate with reduced sensitivity to acute noxious heat and chronic back pain. Functional imaging in α2δ3 mutant mice revealed impaired transmission of thermal pain-evoked signals from the thalamus to higher-order pain centers. Intriguingly, in α2δ3 mutant mice, thermal pain and tactile stimulation triggered strong cross-activation, or synesthesia, of brain regions involved in vision, olfaction, and hearing.


Subject(s)
Calcium Channels/genetics , Drosophila Proteins/genetics , Drosophila/genetics , Pain/genetics , Adult , Animals , Back Pain/genetics , Calcium Channels/metabolism , Drosophila Proteins/metabolism , Gene Knockdown Techniques , Genome-Wide Association Study , Hot Temperature , Humans , Mice , Polymorphism, Single Nucleotide , RNA Interference
2.
Nature ; 464(7286): 287-91, 2010 Mar 11.
Article in English | MEDLINE | ID: mdl-20220848

ABSTRACT

Systematic genetic approaches have provided deep insight into the molecular and cellular mechanisms that operate in simple unicellular organisms. For multicellular organisms, however, the pleiotropy of gene function has largely restricted such approaches to the study of early embryogenesis. With the availability of genome-wide transgenic RNA interference (RNAi) libraries in Drosophila, it is now possible to perform a systematic genetic dissection of any cell or tissue type at any stage of the lifespan. Here we apply these methods to define the genetic basis for formation and function of the Drosophila muscle. We identify a role in muscle for 2,785 genes, many of which we assign to specific functions in the organization of muscles, myofibrils or sarcomeres. Many of these genes are phylogenetically conserved, including genes implicated in mammalian sarcomere organization and human muscle diseases.


Subject(s)
Drosophila melanogaster/embryology , Genes, Insect/genetics , Animals , Computational Biology , Genome-Wide Association Study , Genomic Library , Larva , Male , Muscles/embryology , RNA Interference
3.
Cell ; 140(1): 148-60, 2010 Jan 08.
Article in English | MEDLINE | ID: mdl-20074523

ABSTRACT

Over 1 billion people are estimated to be overweight, placing them at risk for diabetes, cardiovascular disease, and cancer. We performed a systems-level genetic dissection of adiposity regulation using genome-wide RNAi screening in adult Drosophila. As a follow-up, the resulting approximately 500 candidate obesity genes were functionally classified using muscle-, oenocyte-, fat-body-, and neuronal-specific knockdown in vivo and revealed hedgehog signaling as the top-scoring fat-body-specific pathway. To extrapolate these findings into mammals, we generated fat-specific hedgehog-activation mutant mice. Intriguingly, these mice displayed near total loss of white, but not brown, fat compartments. Mechanistically, activation of hedgehog signaling irreversibly blocked differentiation of white adipocytes through direct, coordinate modulation of early adipogenic factors. These findings identify a role for hedgehog signaling in white/brown adipocyte determination and link in vivo RNAi-based scanning of the Drosophila genome to regulation of adipocyte cell fate in mammals.


Subject(s)
Drosophila Proteins/metabolism , Hedgehog Proteins/metabolism , Obesity/genetics , Adipocytes, Brown/metabolism , Adipocytes, White/metabolism , Adipogenesis , Animals , Cyclic AMP/metabolism , Glucocorticoids/metabolism , Humans , Mice , Mice, Knockout , Muscle Cells/metabolism , Repressor Proteins/genetics
4.
Nature ; 458(7241): 987-92, 2009 Apr 23.
Article in English | MEDLINE | ID: mdl-19363474

ABSTRACT

Genome-wide RNA interference (RNAi) screens have identified near-complete sets of genes involved in cellular processes. However, this methodology has not yet been used to study complex developmental processes in a tissue-specific manner. Here we report the use of a library of Drosophila strains expressing inducible hairpin RNAi constructs to study the Notch signalling pathway during external sensory organ development. We assigned putative loss-of-function phenotypes to 21.2% of the protein-coding Drosophila genes. Using secondary assays, we identified 6 new genes involved in asymmetric cell division and 23 novel genes regulating the Notch signalling pathway. By integrating our phenotypic results with protein interaction data, we constructed a genome-wide, functionally validated interaction network governing Notch signalling and asymmetric cell division. We used clustering algorithms to identify nuclear import pathways and the COP9 signallosome as Notch regulators. Our results show that complex developmental processes can be analysed on a genome-wide level and provide a unique resource for functional annotation of the Drosophila genome.


Subject(s)
Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Genome, Insect/genetics , RNA Interference , Receptors, Notch/metabolism , Signal Transduction/genetics , Active Transport, Cell Nucleus , Animals , Animals, Genetically Modified , Cell Division/genetics , Drosophila melanogaster/cytology , Phenotype , Quality Control
5.
Nature ; 448(7150): 151-6, 2007 Jul 12.
Article in English | MEDLINE | ID: mdl-17625558

ABSTRACT

Forward genetic screens in model organisms have provided important insights into numerous aspects of development, physiology and pathology. With the availability of complete genome sequences and the introduction of RNA-mediated gene interference (RNAi), systematic reverse genetic screens are now also possible. Until now, such genome-wide RNAi screens have mostly been restricted to cultured cells and ubiquitous gene inactivation in Caenorhabditis elegans. This powerful approach has not yet been applied in a tissue-specific manner. Here we report the generation and validation of a genome-wide library of Drosophila melanogaster RNAi transgenes, enabling the conditional inactivation of gene function in specific tissues of the intact organism. Our RNAi transgenes consist of short gene fragments cloned as inverted repeats and expressed using the binary GAL4/UAS system. We generated 22,270 transgenic lines, covering 88% of the predicted protein-coding genes in the Drosophila genome. Molecular and phenotypic assays indicate that the majority of these transgenes are functional. Our transgenic RNAi library thus opens up the prospect of systematically analysing gene functions in any tissue and at any stage of the Drosophila lifespan.


Subject(s)
Drosophila melanogaster/genetics , Genomic Library , RNA Interference , Animals , Animals, Genetically Modified , Drosophila melanogaster/metabolism , Exons , Female , Male , Muscles/metabolism , Neurons/metabolism , Organ Specificity , RNA, Messenger , Ribonuclease III/metabolism
6.
Nature ; 416(6879): 438-42, 2002 Mar 28.
Article in English | MEDLINE | ID: mdl-11919634

ABSTRACT

Rac GTPases regulate the actin cytoskeleton to control changes in cell shape. To date, the analysis of Rac function during development has relied heavily on the use of dominant mutant isoforms. Here, we use loss-of-function mutations to show that the three Drosophila Rac genes, Rac1, Rac2 and Mtl, have overlapping functions in the control of epithelial morphogenesis, myoblast fusion, and axon growth and guidance. They are not required for the establishment of planar cell polarity, as had been suggested on the basis of studies using dominant mutant isoforms. The guanine nucleotide exchange factor, Trio, is essential for Rac function in axon growth and guidance, but not for epithelial morphogenesis or myoblast fusion. Different Rac activators thus act in different developmental processes. The specific cellular response to Rac activation may be determined more by the upstream activator than the specific Rac protein involved.


Subject(s)
Drosophila Proteins/physiology , Drosophila/physiology , rac GTP-Binding Proteins/physiology , rac1 GTP-Binding Protein/physiology , Animals , Axons/physiology , Cell Movement , Cell Polarity , Drosophila/embryology , Drosophila/genetics , Drosophila Proteins/genetics , Female , Genes, Insect , Male , Mutation , Nervous System/embryology , rac GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/genetics , RAC2 GTP-Binding Protein
7.
Nature ; 416(6879): 442-7, 2002 Mar 28.
Article in English | MEDLINE | ID: mdl-11919635

ABSTRACT

Growth, guidance and branching of axons are all essential processes for the precise wiring of the nervous system. Rho family GTPases transduce extracellular signals to regulate the actin cytoskeleton. In particular, Rac has been implicated in axon growth and guidance. Here we analyse the loss-of-function phenotypes of three Rac GTPases in Drosophila mushroom body neurons. We show that progressive loss of combined Rac1, Rac2 and Mtl activity leads first to defects in axon branching, then guidance, and finally growth. Expression of a Rac1 effector domain mutant that does not bind Pak rescues growth, partially rescues guidance, but does not rescue branching defects of Rac mutant neurons. Mosaic analysis reveals both cell autonomous and non-autonomous functions for Rac GTPases, the latter manifesting itself as a strong community effect in axon guidance and branching. These results demonstrate the central role of Rac GTPases in multiple aspects of axon development in vivo, and suggest that axon growth, guidance and branching could be controlled by differential activation of Rac signalling pathways.


Subject(s)
Axons/physiology , Drosophila Proteins/physiology , rac GTP-Binding Proteins/physiology , rac1 GTP-Binding Protein/physiology , Amino Acid Sequence , Animals , Axons/enzymology , Cell Division , Cell Movement , Drosophila , Drosophila Proteins/genetics , Genes, Insect , Molecular Sequence Data , Mutation , rac GTP-Binding Proteins/genetics , rac1 GTP-Binding Protein/genetics , RAC2 GTP-Binding Protein
SELECTION OF CITATIONS
SEARCH DETAIL
...