Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
1.
Blood Press Monit ; 28(3): 149-157, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-37058087

ABSTRACT

BACKGROUND: The prognostic value of ambulatory blood pressure (BP) monitoring (ABPM) is poorly understood in Latin American populations. METHODS: A prospective observational study was conducted on 1339 patients with hypertension who underwent 24-h BP monitoring between 2015 and 2019. The incidence of serious adverse cardiovascular events (MACE) was analysed using a Cox proportional hazards model adjusted for potential confounders. Three previously reported morning surge definitions were evaluated for SBP and DBP using different ABPM components: sleep-through morning surge, pre-awakening, and morning night-time difference. RESULTS: The mean age was 62 years, 52% were female, 32.8% had dyslipidaemia, 27.2% were smokers, and 7.8% had diabetes. During a median follow-up period of 32 months, 197 MACE occurred. In men, the adjusted hazard ratio (HR) was 1.84 [95% confidence interval (CI), 1.35-2.49; P < 0.001). The HR increased to 2.03 (95% CI, 1.89-2.17; P < 0.001) with a cut-off value of 35 mmHg for a 10 mmHg increase in sleep-through morning surge. The increased adjusted HR associated with the morning rise persisted for each secondary endpoint, including 21 cardiovascular deaths [HR: 2.70 (95% CI, 2.03-3.60; P < 0.001)], 78 myocardial infarctions [HR: 1.92 (95% CI, 1.72-2.15; P < 0.001)], 24 hospitalisations for heart failure [HR: 1.77 (95% CI, 1.48-2.12; P < 0.001)], 22 strokes [HR: 2.32 (95% CI, 1.85-2.91; P < 0.001)], and 52 atrial fibrillations [HR: 1.94 (95% CI, 1.71-2.20; P < 0.001)]. CONCLUSION: The morning BP rise was the most important circadian prognostic factor for MACE in patients with hypertension, which deserves more attention.


Subject(s)
Blood Pressure Monitoring, Ambulatory , Hypertension , Male , Humans , Female , Middle Aged , Blood Pressure/physiology , Circadian Rhythm/physiology , Hypertension/complications , Hypertension/epidemiology , Sleep
2.
Heliyon ; 8(2): e08989, 2022 Feb.
Article in English | MEDLINE | ID: mdl-35243102

ABSTRACT

BACKGROUND: Cardiovascular inflammation and oxidative stress are determining factors in high blood pressure and arrhythmias. Indole-3-carbinol is a cruciferous-derived phytochemical with potential anti-inflammatory and antioxidant effects. However, its implications on the modulation of cardiovascular inflammatory-oxidative markers are unknown. OBJECTIVES: To establish the effects of indole-3-carbinol on the oxidative-inflammatory-proarrhythmic conditions associated with hypertension. MATERIALS: Histological, biochemical, molecular, and functional aspects were evaluated in 1) Culture of mouse BV-2 glial cells subjected to oxidative-inflammatory damage by lipopolysaccharides (100 ng/mL) in the presence or absence of 40 µM indole-3-carbinol (n = 5); 2) Male spontaneously hypertensive rats (SHR) and Wistar Kyoto rats receiving indole-3-carbinol (2000 ppm/day, orally) during the first 8 weeks of life (n = 15); 3) Isolated rat hearts were submitted to 10 min regional ischemia and 10 min reperfusion. RESULTS: 1) lipopolysaccharides induced oxidative stress and increased inflammatory markers; indole-3-carbinol reversed both conditions (interleukin 6, tumor necrosis factor α, the activity of nicotinamide adenine dinucleotide phosphate oxidase, nitric oxide, inducible nitric oxide synthase, heat shock protein 70, all p < 0.01 vs lipopolysaccharides). 2) SHR rats showed histological, structural, and functional changes with increasing systolic blood pressure (154 ± 8 mmHg vs. 122 ± 7 mmHg in Wistar Kyoto rats, p < 0.01); Inflammatory-oxidative markers also increased, and nitric oxide and heat shock protein 70 decreased. Conversely, indole-3-carbinol reduced oxidative-inflammatory markers and systolic blood pressure (133 ± 8 mmHg, p < 0.01 vs. SHR). 3) indole-3-carbinol reduced reperfusion arrhythmias from 8/10 in SHR to 0/10 (p = 0.0007 by Fisher's exact test). CONCLUSIONS: Indole-3-carbinol reduces the inflammatory-oxidative-proarrhythmic process of hypertension. The nitric oxide and heat shock protein 70 are relevant mechanisms of indole-3-carbinol protective actions. Further studies with this pleiotropic phytochemical as a promising cardioprotective are guaranteed.

3.
Int J Mol Sci ; 23(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35163278

ABSTRACT

Postoperative atrial fibrillation (POAF) complicates 15% to 40% of cardiovascular surgeries. Its incidence progressively increases with aging, reaching 50% in octogenarians. This arrhythmia is usually transient but it increases the risk of embolic stroke, prolonged hospital stay, and cardiovascular mortality. Though many pathophysiological mechanisms are known, POAF prediction is still a hot topic of discussion. Doppler echocardiogram and, lately, strain echocardiography have shown significant capacity to predict POAF. Alterations in oxidative stress, calcium handling, mitochondrial dysfunction, inflammation, fibrosis, and tissue aging are among the mechanisms that predispose patients to the perfect "atrial storm". Manifestations of these mechanisms have been related to enlarged atria and impaired function, which can be detected prior to surgery. Specific alterations in the atrial reservoir and pump function, as well as atrial dyssynchrony determined by echocardiographic atrial strain, can predict POAF and help to shed light on which patients could benefit from preventive therapy.


Subject(s)
Atrial Fibrillation/diagnostic imaging , Atrial Fibrillation/physiopathology , Echocardiography/methods , Aged , Aged, 80 and over , Coronary Artery Bypass/adverse effects , Female , Heart Atria/physiopathology , Heart Valve Prosthesis Implantation/adverse effects , Humans , Incidence , Male , Middle Aged , Postoperative Complications/epidemiology , Postoperative Complications/prevention & control , Postoperative Period , Predictive Value of Tests , Prognosis , Risk Assessment , Risk Factors , Severity of Illness Index
4.
Sci Total Environ ; 806(Pt 4): 150918, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653461

ABSTRACT

Light pollution is a global environmental issue that affects photosensitive organisms. For instance, several researchers have recognized melatonin suppression in humans as a direct cause of long-term exposure to high artificial light levels at night. Others have identified low melatonin levels as a risk factor for a higher prevalence of hormone-sensitive cancer. This paper analyzes the association between light pollution, estimated as the emission analysis of satellite worldwide nighttime light collections from 1999 to 2012, and 25,025 breast and 16,119 prostate cancer events from 2003 to 2012. Both types of cancer increased during the study period, but light pollution increased in urban and peri-urban areas and decreased in rural areas. Cumulative light pollution during 5 years showed a positive association with breast cancer but not with prostate cancer. The association between light pollution and breast cancer persisted when adjusted to age-standardized rates with a mean increase of 10.9 events per 100,000 population-year (95% confidence interval 7.0 to 14.8). We conclude that exposure to elevated light pollution levels could be a risk factor for breast cancer in Slovakia. This work can interest researchers who study relationships between atmospheric pollutants and the growing cancer epidemic. The results and the methodology can be extrapolated to any country in the world if data is available.


Subject(s)
Melatonin , Prostatic Neoplasms , Humans , Male , Prevalence , Prostatic Neoplasms/epidemiology , Risk Factors
5.
Oxid Med Cell Longev ; 2021: 8876792, 2021.
Article in English | MEDLINE | ID: mdl-33791076

ABSTRACT

Aging comes with gradual loss of functions that increase the vulnerability to disease, senescence, and death. The mechanisms underlying these processes are linked to a prolonged imbalance between damage and repair. Damaging mechanisms include oxidative stress, mitochondrial dysfunction, chronodisruption, inflammation, and telomere attrition, as well as genetic and epigenetic alterations. Several endogenous tissue repairing mechanisms also decrease. These alterations associated with aging affect the entire organism. The most devastating manifestations involve the cardiovascular system and may lead to lethal cardiac arrhythmias. Together with structural remodeling, electrophysiological and intercellular communication alterations during aging predispose to arrhythmic events. Despite the knowledge on repairing mechanisms in the cardiovascular system, effective antiaging strategies able to reduce the risk of arrhythmias are still missing. Melatonin is a promising therapeutic candidate due to its pleiotropic actions. This indoleamine regulates chronobiology and endocrine physiology. Of relevance, melatonin is an antiaging, antioxidant, antiapoptotic, antiarrhythmic, immunomodulatory, and antiproliferative molecule. This review focuses on the protective effects of melatonin on age-induced cardiac functional and structural alterations, potentially becoming a new fountain of youth for the heart.


Subject(s)
Aging/pathology , Antioxidants/therapeutic use , Arrhythmias, Cardiac/drug therapy , Heart/drug effects , Melatonin/therapeutic use , Animals , Humans , Melatonin/pharmacology , Oxidative Stress/drug effects
6.
Int J Mol Sci ; 21(5)2020 Mar 06.
Article in English | MEDLINE | ID: mdl-32155697

ABSTRACT

Pharmacological concentrations of melatonin reduce reperfusion arrhythmias, but less is known about the antiarrhythmic protection of the physiological circadian rhythm of melatonin. Bilateral surgical removal of the superior cervical ganglia irreversibly suppresses melatonin rhythmicity. This study aimed to analyze the cardiac electrophysiological effects of the loss of melatonin circadian oscillation and the role played by myocardial melatonin membrane receptors, SERCA2A, TNFα, nitrotyrosine, TGFß, KATP channels, and connexin 43. Three weeks after bilateral removal of the superior cervical ganglia or sham surgery, the hearts were isolated and submitted to ten minutes of regional ischemia followed by ten minutes of reperfusion. Arrhythmias, mainly ventricular tachycardia, increased during reperfusion in the ganglionectomy group. These hearts also suffered an epicardial electrical activation delay that increased during ischemia, action potential alternants, triggered activity, and dispersion of action potential duration. Hearts from ganglionectomized rats showed a reduction of the cardioprotective MT2 receptors, the MT1 receptors, and SERCA2A. Markers of nitroxidative stress (nitrotyrosine), inflammation (TNFα), and fibrosis (TGFß and vimentin) did not change between groups. Connexin 43 lateralization and the pore-forming subunit (Kir6.1) of KATP channels increased in the experimental group. We conclude that the loss of the circadian rhythm of melatonin predisposes the heart to suffer cardiac arrhythmias, mainly ventricular tachycardia, due to conduction disorders and changes in repolarization.


Subject(s)
Arrhythmias, Cardiac/pathology , Ganglionectomy/adverse effects , Heart/physiopathology , Myocardial Reperfusion Injury/surgery , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Circadian Rhythm , Connexin 43/genetics , Connexin 43/metabolism , Male , Melatonin/metabolism , Rats , Rats, Wistar , Receptors, Melatonin/genetics , Receptors, Melatonin/metabolism , Sarcoplasmic Reticulum Calcium-Transporting ATPases/genetics , Sarcoplasmic Reticulum Calcium-Transporting ATPases/metabolism
7.
Int J Mol Sci ; 22(1)2020 Dec 29.
Article in English | MEDLINE | ID: mdl-33383853

ABSTRACT

Cardiac connexin-43 (Cx43) creates gap junction channels (GJCs) at intercellular contacts and hemi-channels (HCs) at the peri-junctional plasma membrane and sarcolemmal caveolae/rafts compartments. GJCs are fundamental for the direct cardiac cell-to-cell transmission of electrical and molecular signals which ensures synchronous myocardial contraction. The HCs and structurally similar pannexin1 (Panx1) channels are active in stressful conditions. These channels are essential for paracrine and autocrine communication through the release of ions and signaling molecules to the extracellular environment, or for uptake from it. The HCs and Panx1 channel-opening profoundly affects intracellular ionic homeostasis and redox status and facilitates via purinergic signaling pro-inflammatory and pro-fibrotic processes. These conditions promote cardiac arrhythmogenesis due to the impairment of the GJCs and selective ion channel function. Crosstalk between GJCs and HCs/Panx1 channels could be crucial in the development of arrhythmogenic substrates, including fibrosis. Despite the knowledge gap in the regulation of these channels, current evidence indicates that HCs and Panx1 channel activation can enhance the risk of cardiac arrhythmias. It is extremely challenging to target HCs and Panx1 channels by inhibitory agents to hamper development of cardiac rhythm disorders. Progress in this field may contribute to novel therapeutic approaches for patients prone to develop atrial or ventricular fibrillation.


Subject(s)
Connexin 43/metabolism , Connexins/metabolism , Ion Channel Gating , Myocardium/metabolism , Animals , Anti-Arrhythmia Agents/pharmacology , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Connexin 43/ultrastructure , Connexins/ultrastructure , Disease Susceptibility , Humans , Mitochondria, Heart/drug effects , Mitochondria, Heart/genetics , Mitochondria, Heart/metabolism , Mitochondria, Heart/ultrastructure , Myocardium/ultrastructure
8.
Int J Mol Sci ; 20(23)2019 Nov 25.
Article in English | MEDLINE | ID: mdl-31775376

ABSTRACT

Ischemic postconditioning (IPoC) reduces reperfusion arrhythmias but the antiarrhythmic mechanisms remain unknown. The aim of this study was to analyze IPoC electrophysiological effects and the role played by adenosine A1, A2A and A3 receptors, protein kinase C, ATP-dependent potassium (KATP) channels, and connexin 43. IPoC reduced reperfusion arrhythmias (mainly sustained ventricular fibrillation) in isolated rat hearts, an effect associated with a transient delay in epicardial electrical activation, and with action potential shortening. Electrical impedance measurements and Lucifer-Yellow diffusion assays agreed with such activation delay. However, this delay persisted during IPoC in isolated mouse hearts in which connexin 43 was replaced by connexin 32 and in mice with conditional deletion of connexin 43. Adenosine A1, A2A and A3 receptor blockade antagonized the antiarrhythmic effect of IPoC and the associated action potential shortening, whereas exogenous adenosine reduced reperfusion arrhythmias and shortened action potential duration. Protein kinase C inhibition by chelerythrine abolished the protective effect of IPoC but did not modify the effects on action potential duration. On the other hand, glibenclamide, a KATP inhibitor, antagonized the action potential shortening but did not interfere with the antiarrhythmic effect. The antiarrhythmic mechanisms of IPoC involve adenosine receptor activation and are associated with action potential shortening. However, this action potential shortening is not essential for protection, as it persisted during protein kinase C inhibition, a maneuver that abolished IPoC protection. Furthermore, glibenclamide induced the opposite effects. In addition, IPoC delays electrical activation and electrical impedance recovery during reperfusion, but these effects are independent of connexin 43.


Subject(s)
Arrhythmias, Cardiac/prevention & control , Connexin 43/physiology , Ischemic Postconditioning/methods , KATP Channels/metabolism , Myocardial Ischemia/complications , Protein Kinase C/metabolism , Receptors, Purinergic P1/metabolism , Adenosine Triphosphate/metabolism , Animals , Arrhythmias, Cardiac/etiology , Arrhythmias, Cardiac/metabolism , Arrhythmias, Cardiac/pathology , KATP Channels/genetics , Mice , Mice, Transgenic , Protein Kinase C/genetics , Rats , Rats, Sprague-Dawley , Receptors, Purinergic P1/genetics
9.
J Pineal Res ; 67(4): e12605, 2019 Nov.
Article in English | MEDLINE | ID: mdl-31408542

ABSTRACT

Hypokalemia prolongs the QRS and QT intervals, deteriorates intercellular coupling, and increases the risk for arrhythmia. Melatonin preserves gap junctions and shortens action potential as potential antiarrhythmic mechanisms, but its properties under hypokalemia remain unknown. We hypothesized that melatonin protects against low potassium-induced arrhythmias through the activation of its receptors, resulting in action potential shortening and connexin-43 preservation. After stabilization in Krebs-Henseleit solution (4.5 mEq/L K+ ), isolated hearts from Wistar rats underwent perfusion with low-potassium (1 mEq/L) solution and melatonin (100 µmol/L), a melatonin receptor blocker (luzindole, 5 µmol/L), melatonin + luzindole or vehicle. The primary endpoint of the study was the prevention of ventricular fibrillation. Electrocardiography was used, and epicardial action potentials and heart function were measured and analyzed. The ventricular expression, dephosphorylation, and distribution of connexin-43 were examined. Melatonin reduced the incidence of low potassium-induced ventricular fibrillation from 100% to 59%, delayed the occurrence of ventricular fibrillation and induced a faster recovery of sinus rhythm during potassium restitution. Melatonin prevented QRS widening, action potential activation delay, and the prolongation of action potential duration at 50% of repolarization. Other ECG and action potential parameters, the left ventricular developed pressure, and nonsustained ventricular arrhythmias did not differ among groups. Melatonin prevented connexin-43 dephosphorylation and its abnormal topology (lateralization). Luzindole abrogated the protective effects of melatonin on electrophysiological properties and connexin-43 misdistribution. Our results indicate that melatonin receptor activation protects against low potassium-induced ventricular fibrillation, shortens action potential duration, preserves ventricular electrical activation, and prevents acute changes in connexin-43 distribution. All of these properties make melatonin a remarkable antifibrillatory agent.


Subject(s)
Action Potentials/drug effects , Connexin 43/metabolism , Melatonin/pharmacology , Myocardium/metabolism , Potassium/adverse effects , Receptors, Melatonin/metabolism , Ventricular Fibrillation/metabolism , Animals , Male , Myocardium/pathology , Potassium/pharmacology , Rats , Rats, Wistar , Ventricular Fibrillation/chemically induced , Ventricular Fibrillation/pathology , Ventricular Fibrillation/physiopathology
10.
J Pineal Res ; 65(4): e12513, 2018 Nov.
Article in English | MEDLINE | ID: mdl-29851143

ABSTRACT

Lethal ventricular arrhythmias increase in patients with chronic kidney disease that suffer an acute coronary event. Chronic kidney disease induces myocardial remodeling, oxidative stress, and arrhythmogenesis. A manifestation of the relationship between kidney and heart is the concomitant reduction in vitamin D receptor (VDR) and the increase in angiotensin II receptor type 1 (AT1 ). Melatonin has renal and cardiac protective actions. One potential mechanism is the increase in the heat shock protein 70 (Hsp70)-an antioxidant factor. We aim to determine the mechanisms involved in melatonin (Mel) prevention of kidney damage and arrhythmogenic heart remodeling. Unilateral ureteral-obstruction (UUO) and sham-operated rats were treated with either melatonin (4 mg/kg/day) or vehicle for 15 days. Hearts and kidneys from obstructed rats showed a reduction in VDR and Hsp70. Associated with AT1 up-regulation in the kidneys and the heart of UUO rats also increased oxidative stress, fibrosis, apoptosis, mitochondrial edema, and dilated crests. Melatonin prevented these changes and ventricular fibrillation during reperfusion. The action potential lengthened and hyperpolarized in melatonin-treated rats throughout the experiment. We conclude that melatonin prevents renal damage and arrhythmogenic myocardial remodeling during unilateral ureteral obstruction due to a decrease in oxidative stress/fibrosis/apoptosis associated with AT1 reduction and Hsp70-VDR increase.


Subject(s)
HSP70 Heat-Shock Proteins/metabolism , Melatonin/therapeutic use , Receptor, Angiotensin, Type 1/metabolism , Receptors, Calcitriol/metabolism , Tachycardia, Ventricular/drug therapy , Tachycardia, Ventricular/metabolism , Actins/metabolism , Animals , Apoptosis/drug effects , Fibrosis/metabolism , HSP70 Heat-Shock Proteins/genetics , In Situ Nick-End Labeling , In Vitro Techniques , Kidney/metabolism , Male , Microscopy, Electron , Microscopy, Fluorescence , Mitochondria/drug effects , Mitochondria/metabolism , Myocardium/metabolism , NADPH Oxidases/metabolism , Rats , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/genetics , Receptors, Calcitriol/genetics
11.
Curr Hypertens Rep ; 20(5): 45, 2018 05 09.
Article in English | MEDLINE | ID: mdl-29744660

ABSTRACT

PURPOSE OF REVIEW: Here, we review the known relations between hypertension and obesity to inflammation and postulate the endogenous protective effect of melatonin and its potential as a therapeutic agent. We will describe the multiple effects of melatonin on blood pressure, adiposity, body weight, and focus on mitochondrial-related anti-inflammatory and antioxidant protective effects. RECENT FINDINGS: Hypertension and obesity are usually associated with systemic and tissular inflammation. The progressive affection of target-organs involves multiple mediators of inflammation, most of them redundant, which make anti-inflammatory strategies ineffective. Melatonin reduces blood pressure, body weight, and inflammation. The mechanisms of action of this ancient molecule of protection involve multiple levels of action, from subcellular to intercellular. Mitochondria is a key inflammatory element in vascular and adipose tissue and a potential pharmacological target. Melatonin protects against mitochondrial dysfunction. Melatonin reduces blood pressure and adipose tissue dysfunction by multiple anti-inflammatory/antioxidant actions and provides potent protection against mitochondria-mediated injury in hypertension and obesity. This inexpensive and multitarget molecule has great therapeutic potential against both epidemic diseases.


Subject(s)
Anti-Inflammatory Agents/therapeutic use , Hypertension/drug therapy , Inflammation/drug therapy , Melatonin/therapeutic use , Obesity/drug therapy , Animals , Antioxidants/therapeutic use , Blood Pressure/drug effects , Humans , Hypertension/complications , Hypertension/physiopathology , Inflammation/metabolism , Inflammation/physiopathology , Mitochondria/metabolism , Obesity/complications , Obesity/physiopathology , Oxidative Stress/drug effects
12.
J Cardiovasc Pharmacol Ther ; 20(2): 211-20, 2015 Mar.
Article in English | MEDLINE | ID: mdl-24924917

ABSTRACT

Cardiovascular disease is often associated with chronic kidney disease and vice versa; myocardial vitamin D receptors (VDRs) are among the probable links between the 2 disorders. The vitamin D receptor activator paricalcitol protects against some renal and cardiovascular complications. However, the structural and electrophysiological effects of myocardial vitamin D receptor modification and its impact on the response to ischemia-reperfusion are currently unknown. This work attempted to determine whether obstructive nephropathy induced myocardial changes (in rats) linked to vitamin D receptor deficiency and to ventricular arrhythmias in Langendorff-perfused hearts. Unilateral ureteral-obstructed and Sham-operated rats were treated with either paricalcitol (30 ng/kg/d intraperitoneal) or vehicle for 15 days. In 5 hearts from each group, we found that obstructed rats showed a reduction in VDRs and an increase in angiotensin II type 1 receptor expression (messenger RNA and protein), suffered fibrosis (determined by Masson trichrome stain) and myofibril reduction with an increase in mitochondrial size, and had dilated crests (determined by electron microscopy). These changes were reversed by paricalcitol. In 8 additional hearts per group, we found that obstructed rats showed a higher incidence of ventricular fibrillation during reperfusion (after 10 minutes of regional ischemia) than did those treated with paricalcitol. The action potential duration was prolonged throughout the experiment in paricalcitol-treated rats. We conclude that the reduction in myocardial vitamin D receptor expression in obstructed rats might be related to myocardial remodeling associated with an increase in arrhythmogenesis and that paricalcitol protects against these changes by restoring myocardial vitamin D receptor levels and prolonging action potentials.


Subject(s)
Arrhythmias, Cardiac/drug therapy , Ergocalciferols/therapeutic use , Myocardial Reperfusion Injury/drug therapy , Myocardium/pathology , Receptors, Calcitriol/deficiency , Ureteral Obstruction/complications , Action Potentials , Animals , Coronary Circulation , Female , Myocardium/metabolism , Rats , Rats, Inbred WKY , Receptor, Angiotensin, Type 1/analysis , Receptors, Calcitriol/analysis , Ureteral Obstruction/metabolism
13.
J Pineal Res ; 55(2): 166-73, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23635352

ABSTRACT

Melatonin reduces reperfusion arrhythmias when administered before coronary occlusion, but in the clinical context of acute coronary syndromes, most of the therapies are administered at the time of reperfusion. Patients frequently have physiological modifications that can reduce the response to therapeutic interventions. This work determined whether acute melatonin administration starting at the moment of reperfusion protects against ventricular arrhythmias in Langendorff-perfused hearts isolated from fructose-fed rats (FFR), a dietary model of metabolic syndrome, and from spontaneous hypertensive rats (SHR). In both experimental models, we confirmed metabolic alterations, a reduction in myocardial total antioxidant capacity and an increase in arterial pressure and NADPH oxidase activity, and in FFR, we also found a decrease in eNOS activity. Melatonin (50 µm) initiated at reperfusion after 15-min regional ischemia reduced the incidence of ventricular fibrillation from 83% to 33% for the WKY strain, from 92% to 25% in FFR, and from 100% to 33% in SHR (P = 0.0361, P = 0.0028, P = 0.0013, respectively, by Fisher's exact test, n = 12 each). Although, ventricular tachycardia incidence was high at the beginning of reperfusion, the severity of the arrhythmias progressively declined in melatonin-treated hearts. Melatonin induced a shortening of the action potential duration at the beginning of reperfusion and in the SHR group also a faster recovery of action potential amplitude. We conclude that melatonin protects against ventricular fibrillation when administered at reperfusion, and these effects are maintained in hearts from rats exposed to major cardiovascular risk factors. These results further support the ongoing translation to clinical trials of this agent.


Subject(s)
Antioxidants/administration & dosage , Fructose/administration & dosage , Melatonin/administration & dosage , Myocardial Reperfusion/adverse effects , Ventricular Fibrillation/prevention & control , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Hypertension/complications , Male , Membrane Potentials/drug effects , Metabolic Syndrome/complications , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Ventricular Fibrillation/etiology
14.
Rev. urug. cardiol ; 26(2): 101-107, sept. 2011. ilus, tab
Article in Spanish | LILACS | ID: biblio-962296

ABSTRACT

Introducción: el poscondicionamiento isquémico (PCI) es una estrategia protectora contra la injuria por reperfusión con propiedades antiarrítmicas. La hipertrofia cardíaca secundaria a la hipertensión arterial aumenta el riesgo de sufrir arritmias y, además, reduce la respuesta a algunos tratamientos. Objetivo: determinar si el efecto antiarrítmico del PCI se mantiene en corazones hipertróficos. Método: los corazones aislados de ratas Wistar Kyoto (WKY) y de ratas espontáneamente hipertensas (SHR) de la misma edad, fueron perfundidos según la técnica de Langendorff y sometidos a 15 min de isquemia regional. Al momento de la reperfusión se dividieron en: a) WKY, b) WKY-PCI, c) SHR, d) SHR-PCI (n=13 por grupo). El PCI consistió en tres ciclos de 30 s de reperfusión y 30 s de isquemia, al inicio de la reperfusión. Se clasificaron las arritmias ventriculares observadas en el ECG. Se estimó la hipertrofia por el peso cardíaco relativo. Resultados: la hipertensión arterial en las ratas SHR provocó hipertrofia miocárdica. Todos los corazones sufrieron una alta incidencia de fibrilación ventricular al inicio de la reperfusión (SHR 92,3% y WKY 77%, ns). El PCI restituyó el ritmo sinusal en los corazones de las ratas normotensas (WKY-PCI 61,5% vs WKY 23,1%, p=0,0236 por test de ji2) y en los de las SHR (SHR-PCI 69,2% vs SHR 15,4%, p=0,0016 test de ji2). Conclusión: el PCI fue capaz de restituir el ritmo sinusal en la mayoría de los corazones que presentaron arritmias ventriculares de reperfusión y el efecto antiarrítmico se mantuvo en corazones hipertróficos provenientes de ratas SHR.


Introduction: ischemic postconditioning (IPC) is a protective strategy against reperfusion injury with antiarrhythmic properties. Cardiac hypertrophy secondary to hypertension increases the risk of arrhythmias and also reduces the response to some treatments. Objective: to determine whether the antiarrhythmic effect of IPC was maintained in hypertrophic hearts. Methods: isolated rat hearts from Wistar Kyoto rats (WKY) and spontaneously hypertensive rats (SHR) of the same age, were perfused according to Langendorff technique and subjected to 15 min regional ischemia. At the moment of reperfusion, hearts were divided into: a) WKY, b) WKY-IPC, c) SHR, d) SHR-IPC (each group, n= 13). The IPC consisted of 3 cycles of 30 s of reperfusion and 30 s of ischemia at the onset of reperfusion. Ventricular arrhythmias were diagnosed using ECG records. Hypertrophy was estimated by relative heart weight. Results: hypertension in SHR induce myocardial hypertrophy. All hearts underwent a high incidence of ventricular fibrillation (SHR 92,3% and WKY 77%, ns). IPC restored sinus rhythm in the hearts of normotensive rats (WKY-PCI 61,5% versus WKY 23,1%, p = 0,0236 by chi2 test) and in those from SHR (SHR-PCI 69% versus SHR 15,4%, p = 0,0016 chi2 test). Conclusion: IPC is able to restore sinus rhythm from most of the hearts that developed reperfusion ventricular arrhythmias and the antiarrhythmic effect remains in hypertrophic hearts from SHR rats.

15.
Food Funct ; 1(1): 124-9, 2010 Oct.
Article in English | MEDLINE | ID: mdl-21776463

ABSTRACT

The present study examines the effect of chronic administration of dealcoholized red wine Malbec (DRW) on vascular remodeling and NAD(P)H oxidase and endothelial nitric oxide synthase activity (eNOS) in an experimental model of metabolic syndrome induced by fructose administration. Thirty-day old male Wistar rats were fed a normal rat diet (control) or the same diet plus 10% fructose in drinking water (FFR). During the last 4 weeks of a 10-week period of the corresponding diet, a subgroup of control and FFR (n=8 each) received DRW in their drinking water. Systolic blood pressure (SBP), a homeostasis model assessment of insulin resistance (HOMA-IR), aortic NAD(P)H oxidase and eNOS activity in the heart and vascular tissue were evaluated. Vascular remodeling was evaluated in the left carotid artery (CA) and interlobar, arcuate and interlobular renal arteries (RA) through lumen to media (L/M) ratio determination. At the end of the study FFR increased the SBP (p < 0.001), HOMA-IR (p < 0.001), and aortic NAD(P)H oxidase activity (p < 0,05) but reduced cardiac and vascular eNOS activity (p < 0.01), L/M ratio in CA (p < 0.001) and RA (p < 0.01) compared with the C group. DRW reduced SBP (p < 0.05), aortic NAD(P)H oxidase (p < 0.05), and recovered eNOS activity (p < 0.001) and L/M in CA (p < 0.001) and RA (p < 0.001) compared with FFR. This study provides new data about the beneficial effect of DRW on oxidative stress and vascular remodeling in the experimental model of metabolic syndrome. Data suggest the participation of mechanisms involving oxidative stress in FFR alterations and the usefulness of natural antioxidant substances present in red wine in the reversion of these changes.


Subject(s)
Antioxidants/administration & dosage , Blood Vessels/physiopathology , Metabolic Syndrome/physiopathology , NADPH Oxidases/metabolism , Nitric Oxide Synthase Type III/metabolism , Wine/analysis , Animals , Aorta/enzymology , Blood Pressure , Blood Vessels/enzymology , Diet , Endothelium/physiopathology , Ethanol/analysis , Fructose/administration & dosage , Insulin Resistance , Male , Metabolic Syndrome/drug therapy , Myocardium/enzymology , Nitric Oxide/metabolism , Oxidative Stress/drug effects , Rats , Rats, Wistar , Reactive Oxygen Species/metabolism
16.
J Pineal Res ; 46(2): 155-60, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19175855

ABSTRACT

Reperfusion after a short period of cardiac ischemia triggers ventricular arrhythmias attributable to ionic imbalance and oxidative stress. Melatonin offers some degree of protection, but its effects on the cardiac action potentials are unknown. We evaluated the effects of 5, 10, 20 and 50 microM melatonin in isolated perfused rat hearts subjected to 10 min of regional ischemia. ECG and membrane potentials were synchronously displayed. After 15 min of reperfusion, total antioxidant capacity (TAC) was determined. Melatonin did not change the ischemic depolarization nor the action potential amplitude depression, but at the end of ischemia the action potential duration (APD) decreased in control and 5 microM melatonin-treated hearts. By contrast, it returned to preischemic levels in hearts given 20 and 50 microM melatonin. Melatonin reduced the incidence of reperfusion arrhythmias from 100% in control to 50% in 5 and 10 microM, to 40% in 20 microM and 30% in 50 microM hearts. TAC values were higher at all melatonin concentrations. We conclude that melatonin reduced the incidence of reperfusion arrhythmias because of its antioxidant effects. In addition, at 20 and 50 microM lengthened APD and promoted an improved protection. This latter effect should be considered when in vivo applications of melatonin are considered.


Subject(s)
Antioxidants/pharmacology , Arrhythmias, Cardiac/physiopathology , Melatonin/pharmacology , Myocardial Reperfusion Injury/physiopathology , Animals , Dose-Response Relationship, Drug , Electrophysiologic Techniques, Cardiac/methods , Female , Heart , Rats , Rats, Sprague-Dawley , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...