Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Sensors (Basel) ; 24(12)2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38931715

ABSTRACT

Lithium, a critical natural resource integral to modern technology, has influenced diverse industries since its discovery in the 1950s. Of particular interest is lithium-7, the most prevalent lithium isotope on Earth, playing a vital role in applications such as batteries, metal alloys, medicine, and nuclear research. However, its extraction presents significant environmental and logistical challenges. This article explores the potential for lithium exploration on the Moon, driven by its value as a resource and the prospect of cost reduction due to the Moon's lower gravity, which holds promise for future space exploration endeavors. Additionally, the presence of lithium in the solar wind and its implications for material transport across celestial bodies are subjects of intrigue. Drawing from a limited dataset collected during the Apollo missions (Apollo 12, 15, 16, and 17) and leveraging artificial intelligence techniques and sample expansion through bootstrapping, this study develops predictive models for lithium-7 concentration based on spectral patterns. The study areas encompass the Aitken crater, Hadley Rima, and the Taurus-Littrow Valley, where higher lithium concentrations are observed in basaltic lunar regions. This research bridges lunar geology and the formation of the solar system, providing valuable insights into celestial resources and enhancing our understanding of space. The data used in this study were obtained from the imaging sensors (infrared, visible, and ultraviolet) of the Clementine satellite, which significantly contributed to the success of our research. Furthermore, the study addresses various aspects related to statistical analysis, sample quality validation, resampling, and bootstrapping. Supervised machine learning model training and validation, as well as data import and export, were explored. The analysis of data generated by the Clementine probe in the near-infrared (NIR) and ultraviolet-visible (UVVIS) spectra revealed evidence of the presence of lithium-7 (Li-7) on the lunar surface. The distribution of Li-7 on the lunar surface is non-uniform, with varying concentrations in different regions of the Moon identified, supporting the initial hypothesis associating surface Li-7 concentration with exposure to solar wind. While a direct numerical relationship between lunar topography and Li-7 concentration has not been established due to morphological diversity and methodological limitations, preliminary results suggest significant economic and technological potential in lunar lithium exploration and extraction.

2.
Nano Lett ; 24(3): 790-796, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38189790

ABSTRACT

We experimentally and computationally investigate the magneto-conductance across the radial heterojunction of InAs-GaSb core-shell nanowires under a magnetic field, B, up to 30 T and at temperatures in the range 4.2-200 K. The observed double-peak negative differential conductance markedly blue-shifts with increasing B. The doublet accounts for spin-polarized currents through the Zeeman split channels of the InAs (GaSb) conduction (valence) band and exhibits strong anisotropy with respect to B orientation and marked temperature dependence. Envelope function approximation and a semiclassical (WKB) approach allow to compute the magnetic quantum states of InAs and GaSb sections of the nanowire and to estimate the B-dependent tunneling current across the broken-gap interface. Disentangling different magneto-transport channels and a thermally activated valence-to-valence band transport current, we extract the g-factor from the spin-up and spin-down dI/dV branch dispersion, revealing a giant, strongly anisotropic g-factor in excess of 60 (100) for the radial (tilted) field configurations.

3.
Nat Commun ; 14(1): 318, 2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36658139

ABSTRACT

The quantum Hall (QH) effect in two-dimensional electron systems (2DESs) is conventionally observed at liquid-helium temperatures, where lattice vibrations are strongly suppressed and bulk carrier scattering is dominated by disorder. However, due to large Landau level (LL) separation (~2000 K at B = 30 T), graphene can support the QH effect up to room temperature (RT), concomitant with a non-negligible population of acoustic phonons with a wave-vector commensurate to the inverse electronic magnetic length. Here, we demonstrate that graphene encapsulated in hexagonal boron nitride (hBN) realizes a novel transport regime, where dissipation in the QH phase is governed predominantly by electron-phonon scattering. Investigating thermally-activated transport at filling factor 2 up to RT in an ensemble of back-gated devices, we show that the high B-field behaviour correlates with their zero B-field transport mobility. By this means, we extend the well-accepted notion of phonon-limited resistivity in ultra-clean graphene to a hitherto unexplored high-field realm.

4.
Nanomaterials (Basel) ; 12(3)2022 Jan 19.
Article in English | MEDLINE | ID: mdl-35159666

ABSTRACT

Two-dimensional transition metal dichalcogenides (2D-TMDs) are among the most promising materials for exploring and exploiting exciton transitions. Excitons in 2D-TMDs present remarkably long lifetimes, even at room temperature. The spectral response of exciton transitions in 2D-TMDs has been thoroughly characterized over the past decade by means of photoluminescence spectroscopy, transmittance spectroscopy, and related techniques; however, the spectral dependence of their electronic response is still not fully characterized. In this work, we investigate the electronic response of exciton transitions in monolayer MoSe2 via low-temperature photocurrent spectroscopy. We identify the spectral features associated with the main exciton and trion transitions, with spectral bandwidths down to 15 meV. We also investigate the effect of the Fermi level on the position and intensity of excitonic spectral features, observing a very strong modulation of the photocurrent, which even undergoes a change in sign when the Fermi level crosses the charge neutrality point. Our results demonstrate the unexploited potential of low-temperature photocurrent spectroscopy for studying excitons in low-dimensional materials, and provide new insight into excitonic transitions in 1L-MoSe2.

5.
Micromachines (Basel) ; 12(12)2021 Dec 17.
Article in English | MEDLINE | ID: mdl-34945426

ABSTRACT

Ionic-liquid gating (ILG) is able to enhance carrier densities well above the achievable values in traditional field-effect transistors (FETs), revealing it to be a promising technique for exploring the electronic phases of materials in extreme doping regimes. Due to their chemical stability, transition metal dichalcogenides (TMDs) are ideal candidates to produce ionic-liquid-gated FETs. Furthermore, as recently discovered, ILG can be used to obtain the band gap of two-dimensional semiconductors directly from the simple transfer characteristics. In this work, we present an overview of the operation principles of ionic liquid gating in TMD-based transistors, establishing the importance of the reference voltage to obtain hysteresis-free transfer characteristics, and hence, precisely determine the band gap. We produced ILG-based bilayer WSe2 FETs and demonstrated their ambipolar behavior. We estimated the band gap directly from the transfer characteristics, demonstrating the potential of ILG as a spectroscopy technique.

6.
Nanoscale ; 13(38): 16156-16163, 2021 Oct 08.
Article in English | MEDLINE | ID: mdl-34543368

ABSTRACT

Two-dimensional transition metal dichalcogenide (TMD) phototransistors have been the object of intensive research during the last years due to their potential for photodetection. Photoresponse in these devices is typically caused by a combination of two physical mechanisms: the photoconductive effect (PCE) and photogating effect (PGE). In earlier literature for monolayer (1L) MoS2 phototransistors, PGE is generally attributed to charge trapping by polar molecules adsorbed to the semiconductor channel, giving rise to a very slow photoresponse. Thus, the photoresponse of 1L-MoS2 phototransistors at high-frequency light modulation is assigned to PCE alone. Here we investigate the photoresponse of a fully h-BN encapsulated monolayer (1L) MoS2 phototransistor. In contrast with previous understanding, we identify a rapidly-responding PGE mechanism that becomes the dominant contribution to photoresponse under high-frequency light modulation. Using a Hornbeck-Haynes model for the photocarrier dynamics, we fit the illumination power dependence of this PGE and estimate the energy level of the involved traps. The resulting energies are compatible with shallow traps in MoS2 caused by the presence of sulfur vacancies.

7.
Open Res Eur ; 1: 98, 2021.
Article in English | MEDLINE | ID: mdl-37645138

ABSTRACT

Optoelectronic device characterization requires to probe the electrical transport changes upon illumination with light of different incident powers, wavelengths, and modulation frequencies. This task is typically performed using laser-based or lamp + monochromator-based light sources, that result complex to use and costly to implement. Here, we describe the use of multimode fiber-coupled light-emitting diodes (LEDs) as a simple, low-cost alternative to more conventional light sources, and demonstrate their capabilities by extracting the main figures of merit of optoelectronic devices based on monolayer MoS 2, i.e. optical absorption edge, photoresponsivity, response time and detectivity. The described light sources represent an excellent alternative for performing optoelectronic characterization experiments on a limited budget.

8.
Nature ; 576(7786): 253-256, 2019 12.
Article in English | MEDLINE | ID: mdl-31827290

ABSTRACT

Limiting the increase of CO2 in the atmosphere is one of the largest challenges of our generation1. Because carbon capture and storage is one of the few viable technologies that can mitigate current CO2 emissions2, much effort is focused on developing solid adsorbents that can efficiently capture CO2 from flue gases emitted from anthropogenic sources3. One class of materials that has attracted considerable interest in this context is metal-organic frameworks (MOFs), in which the careful combination of organic ligands with metal-ion nodes can, in principle, give rise to innumerable structurally and chemically distinct nanoporous MOFs. However, many MOFs that are optimized for the separation of CO2 from nitrogen4-7 do not perform well when using realistic flue gas that contains water, because water competes with CO2 for the same adsorption sites and thereby causes the materials to lose their selectivity. Although flue gases can be dried, this renders the capture process prohibitively expensive8,9. Here we show that data mining of a computational screening library of over 300,000 MOFs can identify different classes of strong CO2-binding sites-which we term 'adsorbaphores'-that endow MOFs with CO2/N2 selectivity that persists in wet flue gases. We subsequently synthesized two water-stable MOFs containing the most hydrophobic adsorbaphore, and found that their carbon-capture performance is not affected by water and outperforms that of some commercial materials. Testing the performance of these MOFs in an industrial setting and consideration of the full capture process-including the targeted CO2 sink, such as geological storage or serving as a carbon source for the chemical industry-will be necessary to identify the optimal separation material.

9.
ACS Appl Mater Interfaces ; 11(40): 36789-36799, 2019 Oct 09.
Article in English | MEDLINE | ID: mdl-31525014

ABSTRACT

Activated carbons (ACs) are among the most commonly used sorbents for CO2 capture because of their high surface areas and micropore volumes, which depend on precursor and activation methods. In this study, we evaluated different ACs obtained from a low-value fraction of liquid-derived coal pyrolysis, namely phenolic oil, which was used as gel precursor before carbonization and KOH activation. CO2 capture performances were determined at temperatures between 25 and 120 °C, with CO2 concentrations ranging from 5 to 90 vol %. The most efficient sample captured 2.86 mmol of CO2/g AC at 25 °C and 1 bar, which is a highly competitive capture capacity, comparable to previously reported values for ACs without any modification/functionalization. Finally, their thermal stability and cyclability (i.e., for a minimum of six adsorption-desorption cycles) were evaluated. CO2 uptake was not affected by desorption temperature after six adsorption-desorption cycles. On the basis of the results obtained in this work, the role of the textural properties into the CO2 capture at realistic postcombustion temperatures and partial pressures was elucidated. In particular, we concluded that CO2 adsorption performance was more related to the volume of the narrowest pores and to the average pore size than to the surface area.

12.
Chemphyschem ; 13(16): 3682-90, 2012 Nov 12.
Article in English | MEDLINE | ID: mdl-22890873

ABSTRACT

Films of a few layers in thickness of reduced graphite oxide (RGO) sheets functionalized by the zwitterionic surfactant N-dodecyl-N,N-dimethyl-3-ammonio-1-propanesulfonate (DDPS) are obtained by using the Langmuir-Blodgett method. The quality of the RGO sheets is checked by analyzing the degrees of reduction and defect repair by means of X-ray photoelectron spectroscopy, atomic force microscopy (AFM), field-emission scanning electron microscopy (SEM), micro-Raman spectroscopy, and electrical conductivity measurements. A modified Hummers method is used to obtain highly oxidized graphite oxide (GO) together with a centrifugation-based method to improve the quality of GO. The GO samples are reduced by hydrazine or vitamin C. Functionalization of RGO with the zwitterionic surfactant improves the degrees of reduction and defect repair of the two reducing agents and significantly increases the electrical conductivity of paperlike films compared with those prepared from unfunctionalized RGO.


Subject(s)
Graphite/chemistry , Oxides/chemistry , Quaternary Ammonium Compounds/chemistry , Surface-Active Agents/chemistry , Electric Conductivity , Microscopy, Atomic Force , Oxidation-Reduction , Photoelectron Spectroscopy , Spectrum Analysis, Raman
13.
J Phys Condens Matter ; 24(30): 305302, 2012 Aug 01.
Article in English | MEDLINE | ID: mdl-22771627

ABSTRACT

In this paper we show the electronic transport and the quantum phase transitions that characterize the quantum Hall regime in graphene placed on SiO(2) substrates at magnetic fields up to 28 T and temperatures down to 4 K. The analysis of the temperature dependence of the Hall and longitudinal resistivity reveals intriguing non-universalities of the critical exponents of the plateau-insulator transition. These exponents depend on the type of disorder that governs the electrical transport and its characterization is important for the design and fabrication of novel graphene nano-devices.

14.
J Hazard Mater ; 193: 304-10, 2011 Oct 15.
Article in English | MEDLINE | ID: mdl-21855215

ABSTRACT

In this work, a regenerable sorbent for Hg retention based on carbon supported Au nanoparticles has been developed and tested. Honeycomb structures were chosen in order to avoid pressure drop and particle entrainment in a fixed bed. Carbon-based supports were selected in order to easily modify the surface chemistry to favour the Au dispersion. Results of Hg retention and regeneration were obtained in a bench scale experimental installation working at high space velocities (for sorbent, 53,000 h(-1); for active phase, 2.6 × 10(8) h(-1)), 120 °C for retention temperature and Hg inlet concentration of 23 ppbv. Gold nanoparticles were shown to be the active phase for mercury capture through an amalgamating mechanism. The mercury captured by the spent sorbent can be easily released to be disposed or reused. Mercury evolution from spent sorbents was followed by TPD experiments showing that the sorbent can be regenerated at temperatures as low as 220 °C.


Subject(s)
Carbon/chemistry , Gold/chemistry , Mercury/chemistry , Metal Nanoparticles , Microscopy, Electron, Scanning
15.
Internet resource in Spanish | LIS -Health Information Locator, LIS-ES-PROF | ID: lis-41806

ABSTRACT

Monografía dirigida a personal sanitario, personal de residencias de ancianos y población general, que pretende dar a conocer a sus destinatarios la importancia y repercusión de diversos fenómenos meteorológicos, en especial olas de calor y frio, para la salud, así como las medidas de prevención y protección que deben tomarse para evitar o minimizar dichos efectos.


Subject(s)
Modalities, Meteorological , Meteorological Concepts , Heat Wave (Meteorology) , Cold Temperature , Environmental Health
16.
Med. & soc ; 19(1): 42-8, ene.-mar. 1996. graf
Article in Spanish | BINACIS | ID: bin-13345

ABSTRACT

Un sistema de control de la calidad del agua de consumo debe contemplar la integración de los diversos niveles de decisión y de ejecución (muestreo, laboratorio, comunicación, otros). Así también de los organismos de control con los encargados de la provisión del agua. El sistema debe tender a lograr una respuesta rápida y eficaz ante las alteraciones en los sistemas de aprovisionamiento y una flexibilidad tal que le permita adaptarse a la mayor demanda de la población en cuanto a cantidad y calidad del control y a los avances en las técnicas analíticas. La provincia del Chubut ha seguido esta tendencia mediante el Programa de Control de la Calidad del Agua de Consumo llevado a cabo por el Departamento de Saneamiento Básico, dependiente de la Dirección de Medio Ambiente del Sistema Provincial de Salud. Se describe brevemente su historia y organización, esperando que esta experiencia pueda ser de utilidad para otros sistemas (AU)


Subject(s)
Water Quality Control , Drinking Water , Argentina
17.
Med. & soc ; 19(1): 42-8, ene.-mar. 1996. graf
Article in Spanish | LILACS | ID: lil-254880

ABSTRACT

Un sistema de control de la calidad del agua de consumo debe contemplar la integración de los diversos niveles de decisión y de ejecución (muestreo, laboratorio, comunicación, otros). Así también de los organismos de control con los encargados de la provisión del agua. El sistema debe tender a lograr una respuesta rápida y eficaz ante las alteraciones en los sistemas de aprovisionamiento y una flexibilidad tal que le permita adaptarse a la mayor demanda de la población en cuanto a cantidad y calidad del control y a los avances en las técnicas analíticas. La provincia del Chubut ha seguido esta tendencia mediante el Programa de Control de la Calidad del Agua de Consumo llevado a cabo por el Departamento de Saneamiento Básico, dependiente de la Dirección de Medio Ambiente del Sistema Provincial de Salud. Se describe brevemente su historia y organización, esperando que esta experiencia pueda ser de utilidad para otros sistemas


Subject(s)
Drinking Water , Water Quality Control , Argentina
SELECTION OF CITATIONS
SEARCH DETAIL
...