Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 94(13): 5359-5366, 2022 04 05.
Article in English | MEDLINE | ID: mdl-35319204

ABSTRACT

The limitations to assess dental enamel remineralization have been overcome by a methodology resulting from the appropriate combination of synchrotron radiation-based techniques on both, infrared microspectroscopy and micro X-ray diffraction, with the help of specific data mining. Since amelogenin plays a key role in modulating the mineralization of tooth enamel, we propose a controlled ion release for fluorapatite structural ions (Ca2+, PO43-, and F-, also including Zn2+) by using weak acid and weak base ion-exchange resins in the presence of amelogenin to remineralize the surface of etched teeth. This combination provides the necessary ions for enamel remineralization and a guide for crystal growth due to the protein. Remineralized tooth samples were analyzed by applying the indicated methodology. The synchrotron data were treated using principal component analysis and multivariate curve resolution to analyze the mineral layer formed in the presence and absence of amelogenin. The remineralizing treatment created a fluorapatite layer free of carbonate impurities and with a similar orientation to that of the natural enamel thanks to amelogenin contribution.


Subject(s)
Synchrotrons , Tooth Remineralization , Chemometrics , Dental Enamel , X-Ray Diffraction
2.
Odontology ; 110(3): 545-556, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35147809

ABSTRACT

This study aims to develop an innovative dental product to remineralize dental enamel by a proper combination of ion-exchange resins as controlled release of mineral ions that form dental enamel, in the presence of amelogenin to guide the appropriate crystal growth. The novel product proposed consists of a combination of ion-exchange resins (weak acid and weak base) individually loaded with the remineralizing ions: Ca2+, PO43- and F-, also including Zn2+ in a minor amount as antibacterial, together with the protein amelogenin. Such cocktail provides onsite controlled release of the ions necessary for enamel remineralization due to the weak character of the resins and at the same time, a guiding tool for related crystal growth by the indicated protein. Amelogenin protein is involved in the structural development of natural enamel and takes a key role in controlling the crystal growth morphology and alignment at the enamel surface. Bovine teeth were treated by applying the resins and protein together with artificial saliva. Treated teeth were evaluated with nanoindentation, scanning electron microscopy and energy-dispersive X-ray spectroscopy. The innovative material induces the dental remineralization creating a fluorapatite layer with a hardness equivalent to sound enamel, with the appropriate alignment of corresponding nanocrystals, being the fluorapatite more acid resistant than the original mineral. Our results suggest that the new product shows potential for promoting long-term remineralization leading to the inhibition of caries and protection of dental structures.


Subject(s)
Dental Caries , Tooth Remineralization , Amelogenin/analysis , Amelogenin/metabolism , Amelogenin/pharmacology , Animals , Cattle , Delayed-Action Preparations/analysis , Delayed-Action Preparations/metabolism , Dental Caries/prevention & control , Dental Enamel , Ion Exchange Resins/analysis , Ion Exchange Resins/metabolism , Minerals , Tooth Remineralization/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...