Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 25(23): 5814-5823, 2019 Apr 23.
Article in English | MEDLINE | ID: mdl-30462869

ABSTRACT

The synthesis of minerals should play a crucial role in the development of new and advanced materials. Since 2016, a renewal of interest to enlarge the mineral synthesis towards industrial requirements has been observed, especially thanks to three main recent papers. The innovative process exposed combines a continuous process with the use of supercritical water. In addition to curtail synthesis times, this process offers a control on the particle characteristics (size, crystallinity, structure, etc.) and a capacity to be easily transferable at an industrial scale. This innovative concept is demonstrated with the synthesis of three minerals which are the talc (a phyllomineral), the xonotlite and the tobermorite (two inominerals). This article proposes an overview of the possibilities to synthesize nanominerals in continuous processing for the development of advanced materials with promising industrial applications.

2.
Environ Sci Pollut Res Int ; 25(5): 4371-4386, 2018 Feb.
Article in English | MEDLINE | ID: mdl-29181758

ABSTRACT

This work is focused on the development of an innovative multi-analytical methodology to estimate the impact suffered by building materials in coastal environments. With the aim of improving the in situ spectroscopic assessment, which is often based on XRF and Raman spectrometers, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy was implemented in the diagnosis study. In this way, the additional benefits from DRIFT were compared to the usual in situ analyses of building materials, which often have interferences from fluorescence and reststrahlen effects. The studies were extended to the laboratory scale by µ-X-ray fluorescence (µ-XRF) cross-section mapping and ion chromatography (IC), and the IC quantitative data were employed to develop thermodynamic models using the ECOS-RUNSALT program, with the aim of rationalizing the behavior of soluble salts with variations in the temperature and the relative humidity (RH). The multi-analytical methodology allowed identification of the most significant weathering agents and classification of the severity of degradation according to the salt content. The suitability of a DRIFT portable device to analyze these types of matrices was verified. Although the Kramers-Kronig algorithm correction proved to be inadequate to decrease the expected spectral distortions, the assignment was successfully performed based on the secondary bands and intensification of the overtones and decreased the time needed for in situ data collection. In addition, the pollutants' distribution in the samples and the possible presence of dangerous compounds, which were not detected during the in situ analysis campaigns, provided valuable information to clarify weathering phenomena.


Subject(s)
Construction Materials/analysis , Environmental Monitoring/methods , Environmental Pollutants/analysis , Atlantic Ocean , Climate , Spain
3.
Angew Chem Int Ed Engl ; 56(12): 3162-3167, 2017 03 13.
Article in English | MEDLINE | ID: mdl-28156037

ABSTRACT

Tobermorite is a fibrillar mineral of the family of calcium silicates. In spite of not being abundant in nature, its structure and properties are reasonably well known because of its interest in the construction industry. Currently, tobermorite is synthesized by hydrothermal methods at mild temperatures. The problem is that such processes are very slow (>5 h) and temperature cannot be increased to speed them up because tobermorite is metastable over 130 °C. Furthermore the product obtained is generally foil-like and not very crystalline. Herein we propose an alternative synthesis method based on the use of a continuous flow reactor and supercritical water. In spite of the high temperature, the transformation of tobermorite to more stable phases can be prevented by accurately controlling the reaction time. As a result, highly crystalline fibrillar tobermorite can be obtained in just a few seconds under thermodynamically metastable conditions.

SELECTION OF CITATIONS
SEARCH DETAIL
...