Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Genomics ; 25(1): 527, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38807085

ABSTRACT

Circular RNAs (circRNA) are a class of non-coding RNA, forming a single-stranded covalently closed loop structure generated via back-splicing. Advancements in sequencing methods and technologies in conjunction with algorithmic developments of bioinformatics tools have enabled researchers to characterise the origin and function of circRNAs, with practical applications as a biomarker of diseases becoming increasingly relevant. Computational methods developed for circRNA analysis are predicated on detecting the chimeric back-splice junction of circRNAs whilst mitigating false-positive sequencing artefacts. In this review, we discuss in detail the computational strategies developed for circRNA identification, highlighting a selection of tool strengths, weaknesses and assumptions. In addition to circRNA identification tools, we describe methods for characterising the role of circRNAs within the competing endogenous RNA (ceRNA) network, their interactions with RNA-binding proteins, and publicly available databases for rich circRNA annotation.


Subject(s)
Computational Biology , RNA, Circular , RNA, Circular/genetics , Computational Biology/methods , Humans , Sequence Analysis, RNA/methods , RNA/genetics , RNA/metabolism , RNA-Binding Proteins/genetics , RNA-Binding Proteins/metabolism
2.
BMC Bioinformatics ; 24(1): 27, 2023 Jan 24.
Article in English | MEDLINE | ID: mdl-36694127

ABSTRACT

BACKGROUND: Circular RNAs (circRNAs) are a class of covalenty closed non-coding RNAs that have garnered increased attention from the research community due to their stability, tissue-specific expression and role as transcriptional modulators via sequestration of miRNAs. Currently, multiple quantification tools capable of detecting circRNAs exist, yet none delineate circRNA-miRNA interactions, and only one employs differential expression analysis. Efforts have been made to bridge this gap by way of circRNA workflows, however these workflows are limited by both the types of analyses available and computational skills required to run them. RESULTS: We present nf-core/circrna, a multi-functional, automated high-throughput pipeline implemented in nextflow that allows users to characterise the role of circRNAs in RNA Sequencing datasets via three analysis modules: (1) circRNA quantification, robust filtering and annotation (2) miRNA target prediction of the mature spliced sequence and (3) differential expression analysis. nf-core/circrna has been developed within the nf-core framework, ensuring robust portability across computing environments via containerisation, parallel deployment on cluster/cloud-based infrastructures, comprehensive documentation and maintenance support. CONCLUSION: nf-core/circrna reduces the barrier to entry for researchers by providing an easy-to-use, platform-independent and scalable workflow for circRNA analyses. Source code, documentation and installation instructions are freely available at https://nf-co.re/circrna and https://github.com/nf-core/circrna .


Subject(s)
MicroRNAs , MicroRNAs/genetics , MicroRNAs/metabolism , RNA, Circular , Workflow , Software , Sequence Analysis, RNA
SELECTION OF CITATIONS
SEARCH DETAIL
...