Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
PLoS Pathog ; 19(10): e1011682, 2023 10.
Article in English | MEDLINE | ID: mdl-37782657

ABSTRACT

Human cytomegalovirus (HCMV) encodes multiple putative G protein-coupled receptors (GPCRs). US28 functions as a viral chemokine receptor and is expressed during both latent and lytic phases of virus infection. US28 actively promotes cellular migration, transformation, and plays a major role in mediating viral latency and reactivation; however, knowledge about the interaction partners involved in these processes is still incomplete. Herein, we utilized a proximity-dependent biotinylating enzyme (TurboID) to characterize the US28 interactome when expressed in isolation, and during both latent (CD34+ hematopoietic progenitor cells) and lytic (fibroblasts) HCMV infection. Our analyses indicate that the US28 signalosome converges with RhoA and EGFR signal transduction pathways, sharing multiple mediators that are major actors in processes such as cellular proliferation and differentiation. Integral members of the US28 signaling complex were validated in functional assays by immunoblot and small-molecule inhibitors. Importantly, we identified RhoGEFs as key US28 signaling intermediaries. In vitro latency and reactivation assays utilizing primary CD34+ hematopoietic progenitor cells (HPCs) treated with the small-molecule inhibitors Rhosin or Y16 indicated that US28 -RhoGEF interactions are required for efficient viral reactivation. These findings were recapitulated in vivo using a humanized mouse model where inhibition of RhoGEFs resulted in a failure of the virus to reactivate. Together, our data identifies multiple new proteins in the US28 interactome that play major roles in viral latency and reactivation, highlights the utility of proximity-sensor labeling to characterize protein interactomes, and provides insight into targets for the development of novel anti-HCMV therapeutics.


Subject(s)
Cytomegalovirus , Signal Transduction , Animals , Mice , Humans , Cytomegalovirus/physiology , Virus Latency , Cell Differentiation , Hematopoietic Stem Cells
2.
J Virol ; 97(10): e0124123, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37772824

ABSTRACT

IMPORTANCE: CD34+ hematopoietic progenitor cells (HPCs) are an important cellular reservoir for latent human cytomegalovirus (HCMV). Several HCMV genes are expressed during latency that are involved with the maintenance of the viral genome in CD34+ HPC. However, little is known about the process of viral reactivation in these cells. Here, we describe a viral protein, pUL8, and its interaction and stabilization with members of the Wnt/ß-catenin pathway as an important component of viral reactivation. We further define that pUL8 and ß-catenin interact with DVL2 via a PDZ-binding domain, and loss of UL8 interaction with ß-catenin-DVL2 restricts viral reactivation. Our findings will be instrumental in understanding the molecular processes involved in HCMV reactivation in order to design new antiviral therapeutics.


Subject(s)
Antigens, CD34 , Cytomegalovirus , Dishevelled Proteins , Hematopoietic Stem Cells , Viral Proteins , Virus Activation , beta Catenin , Humans , Antigens, CD34/metabolism , beta Catenin/chemistry , beta Catenin/metabolism , Cytomegalovirus/genetics , Cytomegalovirus/physiology , Dishevelled Proteins/chemistry , Dishevelled Proteins/metabolism , Hematopoietic Stem Cells/metabolism , Hematopoietic Stem Cells/virology , PDZ Domains , Viral Proteins/chemistry , Viral Proteins/metabolism , Virus Latency/genetics
3.
Semin Cell Dev Biol ; 146: 2-19, 2023 09 15.
Article in English | MEDLINE | ID: mdl-36463091

ABSTRACT

Viruses have evolved a multitude of mechanisms to combat barriers to productive infection in the host cell. Virally-encoded miRNAs are one such means to regulate host gene expression in ways that benefit the virus lifecycle. miRNAs are small non-coding RNAs that regulate protein expression but do not trigger the adaptive immune response, making them powerful tools encoded by viruses to regulate cellular processes. Diverse viruses encode for miRNAs but little sequence homology exists between miRNAs of different viral species. Despite this, common cellular pathways are targeted for regulation, including apoptosis, immune evasion, cell growth and differentiation. Herein we will highlight the viruses that encode miRNAs and provide mechanistic insight into how viral miRNAs aid in lytic and latent infection by targeting common cellular processes. We also highlight how viral miRNAs can mimic host cell miRNAs as well as how viral miRNAs have evolved to regulate host miRNA expression. These studies dispel the myth that viral miRNAs are subtle regulators of gene expression, and highlight the critical importance of viral miRNAs to the virus lifecycle.


Subject(s)
MicroRNAs , Viruses , MicroRNAs/genetics , MicroRNAs/metabolism , Viruses/genetics , Viruses/metabolism , Cell Differentiation , Protein Processing, Post-Translational , Gene Expression , Gene Expression Regulation, Viral/genetics , Gene Expression Regulation
4.
mBio ; 13(1): e0172421, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35012351

ABSTRACT

Human cytomegalovirus (HCMV) is a highly prevalent beta-herpesvirus and a significant cause of morbidity and mortality following hematopoietic and solid organ transplant, as well as the leading viral cause of congenital abnormalities. A key feature of the pathogenesis of HCMV is the ability of the virus to establish a latent infection in hematopoietic progenitor and myeloid lineage cells. The study of HCMV latency has been hampered by difficulties in obtaining and culturing primary cells, as well as an inability to quantitatively measure reactivating virus, but recent advances in both in vitro and in vivo models of HCMV latency and reactivation have led to a greater understanding of the interplay between host and virus. Key differences in established model systems have also led to controversy surrounding the role of viral gene products in latency establishment, maintenance, and reactivation. This review will discuss the details and challenges of various models including hematopoietic progenitor cells, monocytes, cell lines, and humanized mice. We highlight the utility and functional differences between these models and the necessary experimental design required to define latency and reactivation, which will help to generate a more complete picture of HCMV infection of myeloid-lineage cells.


Subject(s)
Cytomegalovirus Infections , Cytomegalovirus , Humans , Animals , Mice , Cytomegalovirus/genetics , Virus Latency/genetics , Cell Line , Hematopoietic Stem Cells , Virus Activation/genetics
5.
mBio ; 12(2)2021 04 06.
Article in English | MEDLINE | ID: mdl-33824207

ABSTRACT

Human cytomegalovirus (HCMV) microRNAs play essential roles in latency and reactivation in CD34+ hematopoietic progenitor cells (HPCs) via regulation of viral and cellular gene expression. In the present study, we show that HCMV miR-US25-1 targets RhoA, a small GTPase required for CD34+ HPC self-renewal, proliferation, and hematopoiesis. Expression of miR-US25-1 impairs signaling through the nonmuscle myosin II light chain, which leads to a block in cytokinesis and an inhibition of proliferation. Moreover, infection with an HCMV mutant lacking miR-US25-1 resulted in increased proliferation of CD34+ HPCs and a decrease in the proportion of genome-containing cells at the end of latency culture. These observations provide a mechanism by which HCMV limits proliferation to maintain latent viral genomes in CD34+ HPCs.IMPORTANCE Each herpesvirus family establishes latency in a unique cell type. Since herpesvirus genomes are maintained as episomes, the virus needs to devise mechanisms to retain the latent genome during cell division. Alphaherpesviruses overcome this obstacle by infecting nondividing neurons, while gammaherpesviruses tether their genome to the host chromosome in dividing B cells. The betaherpesvirus human cytomegalovirus (HCMV) establishes latency in CD34+ hematopoietic progenitor cells (HPCs), but the mechanism used to maintain the viral genome is unknown. In this report, we demonstrate that HCMV miR-US25-1 downregulates expression of RhoA, a key cell cycle regulator, which results in inhibition of CD34+ HPC proliferation by blocking mitosis. Mutation of miR-US25-1 during viral infection results in enhanced cellular proliferation and a decreased frequency of genome-containing CD34+ HPCs. These results reveal a novel mechanism through which HCMV is able to regulate cell division to prevent viral genome loss during proliferation.


Subject(s)
Antigens, CD34/genetics , Cell Proliferation/genetics , Cytomegalovirus/genetics , Genome, Viral , Hematopoietic Stem Cells/physiology , Host-Pathogen Interactions , MicroRNAs/genetics , Virus Latency/genetics , rhoA GTP-Binding Protein/genetics , Antigens, CD34/immunology , Antigens, CD34/metabolism , Cytomegalovirus/pathogenicity , Down-Regulation , Gene Expression Regulation , HEK293 Cells , Humans , MicroRNAs/metabolism , Mitosis/genetics , Signal Transduction/genetics , rhoA GTP-Binding Protein/immunology
6.
Pathogens ; 10(2)2021 Feb 13.
Article in English | MEDLINE | ID: mdl-33668486

ABSTRACT

Human cytomegalovirus (HCMV) encodes 22 mature microRNAs (miRNAs), which regulate a myriad of cellular processes, including vesicular trafficking, cell cycle progression, apoptosis, and immune evasion, as well as viral gene expression. Recent evidence points to a critical role for HCMV miRNAs in mediating latency in CD34+ hematopoietic progenitor cells through modulation of cellular signaling pathways, including attenuation of TGFß and EGFR signaling. Moreover, HCMV miRNAs can act in concert with, or in opposition to, viral proteins in regulating host cell functions. Here, we comprehensively review the studies of HCMV miRNAs in the context of latency and highlight the novel processes that are manipulated by the virus using these small non-coding RNAs.

7.
Methods Mol Biol ; 2244: 301-342, 2021.
Article in English | MEDLINE | ID: mdl-33555594

ABSTRACT

microRNAs (miRNAs) are small noncoding RNAs that regulate gene expression at the posttranscriptional level by binding to sites within the 3' untranslated regions of messenger RNA (mRNA) transcripts. The discovery of this completely new mechanism of gene regulation necessitated the development of a variety of techniques to further characterize miRNAs, their expression, and function. In this chapter, we will discuss techniques currently used in the miRNA field to detect, express and inhibit miRNAs, as well as methods used to identify and validate their targets, specifically with respect to the miRNAs encoded by human cytomegalovirus.


Subject(s)
Cytomegalovirus/genetics , Immunoprecipitation/methods , MicroRNAs/analysis , 3' Untranslated Regions/genetics , Blotting, Northern/methods , Gene Expression/genetics , Gene Expression Regulation, Viral/genetics , Humans , MicroRNAs/genetics , RNA, Messenger/genetics
8.
Cell Rep ; 28(4): 1074-1089.e5, 2019 07 23.
Article in English | MEDLINE | ID: mdl-31340145

ABSTRACT

The WNT signaling network is comprised of multiple receptors that relay various input signals via distinct transduction pathways to execute multiple complex and context-specific output processes. Integrity of the WNT signaling network relies on proper specification between canonical and noncanonical pathways, which presents a regulatory challenge given that several signal transducing elements are shared between pathways. Here, we report that USP9X, a deubiquitylase, and WWP1, an E3 ubiquitin ligase, regulate a ubiquitin rheostat on DVL2, a WNT signaling protein. Our findings indicate that USP9X-mediated deubiquitylation of DVL2 is required for canonical WNT activation, while increased DVL2 ubiquitylation is associated with localization to actin-rich projections and activation of the planar cell polarity (PCP) pathway. We propose that a WWP1-USP9X axis regulates a ubiquitin rheostat on DVL2 that specifies its participation in either canonical WNT or WNT-PCP pathways. These findings have important implications for therapeutic targeting of USP9X in human cancer.


Subject(s)
Dishevelled Proteins/metabolism , Ubiquitin Thiolesterase/metabolism , Ubiquitination , Wnt Signaling Pathway , Cell Line, Tumor , Cell Movement , Cell Polarity , HEK293 Cells , Humans , Protein Binding , Protein Domains , Ubiquitin/metabolism , Ubiquitin Thiolesterase/chemistry , Ubiquitin-Protein Ligases/chemistry , Ubiquitin-Protein Ligases/metabolism
9.
Noncoding RNA ; 4(4)2018 Oct 22.
Article in English | MEDLINE | ID: mdl-30360396

ABSTRACT

It is now well appreciated that microRNAs (miRNAs) play a critical role in the lifecycles of many herpes viruses. The human cytomegalovirus (HCMV) replication cycle varies significantly depending on the cell type infected, with lytic replication occurring in fully-differentiated cells such as fibroblasts, endothelial cells, or macrophages, and latent infection occurring in less-differentiated CD14+ monocytes and CD34+ hematopoietic progenitor cells where viral gene expression is severely diminished and progeny virus is not produced. Given their non-immunogenic nature and their capacity to target numerous cellular and viral transcripts, miRNAs represent a particularly advantageous means for HCMV to manipulate viral gene expression and cellular signaling pathways during lytic and latent infection. This review will focus on our current knowledge of HCMV miRNA viral and cellular targets, and discuss their importance in lytic and latent infection, highlight the challenges of studying HCMV miRNAs, and describe how viral miRNAs can help us to better understand the cellular processes involved in HCMV latency.

10.
J Cell Sci ; 131(5)2018 03 06.
Article in English | MEDLINE | ID: mdl-29361527

ABSTRACT

Cell migration is a tightly coordinated process that requires the spatiotemporal regulation of many molecular components. Because adaptor proteins can serve as integrators of cellular events, they are being increasingly studied as regulators of cell migration. The adaptor protein containing a pleckstrin-homology (PH) domain, phosphotyrosine binding (PTB) domain, and leucine zipper motif 1 (APPL1) is a 709 amino acid endosomal protein that plays a role in cell proliferation and survival as well as endosomal trafficking and signaling. However, its function in regulating cell migration is poorly understood. Here, we show that APPL1 hinders cell migration by modulating both trafficking and signaling events controlled by Rab5 in cancer cells. APPL1 decreases internalization and increases recycling of α5ß1 integrin, leading to higher levels of α5ß1 integrin at the cell surface that hinder adhesion dynamics. Furthermore, APPL1 decreases the activity of the GTPase Rac and its effector PAK, which in turn regulate cell migration. Thus, we demonstrate a novel role for the interaction between APPL1 and Rab5 in governing crosstalk between signaling and trafficking pathways on endosomes to affect cancer cell migration.This article has an associated First Person interview with the first author of the paper.


Subject(s)
Adaptor Proteins, Signal Transducing/genetics , Cell Movement/genetics , Integrin alpha5beta1/genetics , rab5 GTP-Binding Proteins/genetics , Cell Adhesion/genetics , Cell Membrane/genetics , Cell Proliferation/genetics , Endosomes/genetics , Humans , Protein Transport/genetics , Signal Transduction/genetics , p21-Activated Kinases/genetics , rac GTP-Binding Proteins/genetics
11.
Biochem Soc Trans ; 45(3): 771-779, 2017 06 15.
Article in English | MEDLINE | ID: mdl-28620038

ABSTRACT

Endosomal adaptor proteins are important regulators of signaling pathways underlying many biological processes. These adaptors can integrate signals from multiple pathways via localization to specific endosomal compartments, as well as through multiple protein-protein interactions. One such adaptor protein that has been implicated in regulating signaling pathways is the adaptor protein containing a pleckstrin homology (PH) domain, phosphotyrosine-binding (PTB) domain, and leucine zipper motif 1 (APPL1). APPL1 localizes to a subset of Rab5-positive endosomes through its Bin-Amphiphysin-Rvs and PH domains, and it coordinates signaling pathways through its interaction with many signaling receptors and proteins through its PTB domain. This review discusses our current understanding of the role of APPL1 in signaling and trafficking, as well as highlights recent work into the function of APPL1 in cell migration and adhesion.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing/physiology , Animals , Endosomes/metabolism , Humans , Protein Transport
12.
Sci Rep ; 5: 8124, 2015 Jan 29.
Article in English | MEDLINE | ID: mdl-25630460

ABSTRACT

Cell-matrix adhesions are of great interest because of their contribution to numerous biological processes, including cell migration, differentiation, proliferation, survival, tissue morphogenesis, wound healing, and tumorigenesis. Adhesions are dynamic structures that are classically defined on two-dimensional (2D) substrates, though the need to analyze adhesions in more physiologic three-dimensional (3D) environments is being increasingly recognized. However, progress has been greatly hampered by the lack of available tools to analyze adhesions in 3D environments. To address this need, we have developed a platform for the automated analysis, segmentation, and tracking of adhesions (PAASTA) based on an open source MATLAB framework, CellAnimation. PAASTA enables the rapid analysis of adhesion dynamics and many other adhesion characteristics, such as lifetime, size, and location, in 3D environments and on traditional 2D substrates. We manually validate PAASTA and utilize it to quantify rate constants for adhesion assembly and disassembly as well as adhesion lifetime and size in 3D matrices. PAASTA will be a valuable tool for characterizing adhesions and for deciphering the molecular mechanisms that regulate adhesion dynamics in 3D environments.


Subject(s)
Algorithms , Automation , Cell Culture Techniques/methods , Animals , Cell Line, Tumor , Cell-Matrix Junctions/drug effects , Collagen Type I/pharmacology , Green Fluorescent Proteins/metabolism , Humans , Image Processing, Computer-Assisted , Paxillin/metabolism , Rats , Reproducibility of Results , Time-Lapse Imaging
13.
J Cell Sci ; 126(Pt 24): 5585-97, 2013 Dec 15.
Article in English | MEDLINE | ID: mdl-24144700

ABSTRACT

Non-muscle myosin II (MyoII) contractility is central to the regulation of numerous cellular processes, including migration. Rho is a well-characterized modulator of actomyosin contractility, but the function of other GTPases, such as Rac, in regulating contractility is currently not well understood. Here, we show that activation of Rac by the guanine nucleotide exchange factor Asef2 (also known as SPATA13) impairs migration on type I collagen through a MyoII-dependent mechanism that enhances contractility. Knockdown of endogenous Rac or treatment of cells with a Rac-specific inhibitor decreases the amount of active MyoII, as determined by serine 19 (S19) phosphorylation, and negates the Asef2-promoted increase in contractility. Moreover, treatment of cells with blebbistatin, which inhibits MyoII activity, abolishes the Asef2-mediated effect on migration. In addition, Asef2 slows the turnover of adhesions in protrusive regions of cells by promoting large mature adhesions, which has been linked to actomyosin contractility, with increased amounts of active ß1 integrin. Hence, our data reveal a new role for Rac activation, promoted by Asef2, in modulating actomyosin contractility, which is important for regulating cell migration and adhesion dynamics.


Subject(s)
Cell Movement , Collagen Type I/metabolism , Guanine Nucleotide Exchange Factors/physiology , Myosin Type II/metabolism , rac GTP-Binding Proteins/metabolism , Cell Adhesion , Cell Line, Tumor , Humans , Integrin beta1/metabolism , cdc42 GTP-Binding Protein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...