Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 9(1): 103, 2022 03 25.
Article in English | MEDLINE | ID: mdl-35338149

ABSTRACT

Despite technological advances over the last several decades, ship-based hydrography remains the only method for obtaining high-quality, high spatial and vertical resolution measurements of physical, chemical, and biological parameters over the full water column essential for physical, chemical, and biological oceanography and climate science. The Global Ocean Ship-based Hydrographic Investigations Program (GO-SHIP) coordinates a network of globally sustained hydrographic sections. These data provide a unique data set that spans four decades, comprised of more than 40 cross-ocean transects. The section data are, however, difficult to use owing to inhomogeneous format. The purpose of this new temperature, salinity, and dissolved oxygen data product is to combine, reformat and grid these data measured by Conductivity-Temperature-Depth-Oxygen (CTDO) profilers in order to facilitate their use by a wider audience. The product is machine readable and readily accessible by many existing visualisation and analysis software packages. The data processing can be repeated with modifications to suit various applications such as analysis of deep ocean, validation of numerical simulation, and calibration of autonomous platforms.

2.
Nucleic Acids Res ; 49(10): 5956-5966, 2021 06 04.
Article in English | MEDLINE | ID: mdl-33999154

ABSTRACT

Replication of the ∼30 kb-long coronavirus genome is mediated by a complex of non-structural proteins (NSP), in which NSP7 and NSP8 play a critical role in regulating the RNA-dependent RNA polymerase (RdRP) activity of NSP12. The assembly of NSP7, NSP8 and NSP12 proteins is highly dynamic in solution, yet the underlying mechanism remains elusive. We report the crystal structure of the complex between NSP7 and NSP8 of SARS-CoV-2, revealing a 2:2 heterotetrameric form. Formation of the NSP7-NSP8 complex is mediated by two distinct oligomer interfaces, with interface I responsible for heterodimeric NSP7-NSP8 assembly, and interface II mediating the heterotetrameric interaction between the two NSP7-NSP8 dimers. Structure-guided mutagenesis, combined with biochemical and enzymatic assays, further reveals a structural coupling between the two oligomer interfaces, as well as the importance of these interfaces for the RdRP activity of the NSP7-NSP8-NSP12 complex. Finally, we identify an NSP7 mutation that differentially affects the stability of the NSP7-NSP8 and NSP7-NSP8-NSP12 complexes leading to a selective impairment of the RdRP activity. Together, this study provides deep insights into the structure and mechanism for the dynamic assembly of NSP7 and NSP8 in regulating the replication of the SARS-CoV-2 genome, with important implications for antiviral drug development.


Subject(s)
COVID-19 , Coronavirus RNA-Dependent RNA Polymerase/chemistry , SARS-CoV-2/enzymology , Viral Nonstructural Proteins/chemistry , Chromatography, Gel , Coronavirus RNA-Dependent RNA Polymerase/biosynthesis , Coronavirus RNA-Dependent RNA Polymerase/genetics , Crystallography, X-Ray , Dimerization , Models, Molecular , Multiprotein Complexes , Mutagenesis , Mutation , Protein Conformation , Protein Domains , Protein Interaction Mapping , SARS-CoV-2/genetics , SARS-CoV-2/physiology , Structure-Activity Relationship , Viral Nonstructural Proteins/genetics , Virus Replication
3.
Mol Microbiol ; 112(5): 1531-1551, 2019 11.
Article in English | MEDLINE | ID: mdl-31449700

ABSTRACT

The Crp/Fnr family of transcriptional regulators play central roles in transcriptional control of diverse physiological responses, and are activated by a surprising diversity of mechanisms. MrpC is a Crp/Fnr homolog that controls the Myxococcus xanthus developmental program. A long-standing model proposed that MrpC activity is controlled by the Pkn8/Pkn14 serine/threonine kinase cascade, which phosphorylates MrpC on threonine residue(s) located in its extreme amino-terminus. In this study, we demonstrate that a stretch of consecutive threonine and serine residues, T21 T22 S23 S24, is necessary for MrpC activity by promoting efficient DNA binding. Mass spectrometry analysis indicated the TTSS motif is not directly phosphorylated by Pkn14 in vitro but is necessary for efficient Pkn14-dependent phosphorylation on several residues in the remainder of the protein. In an important correction to a long-standing model, we show Pkn8 and Pkn14 kinase activities do not play obvious roles in controlling MrpC activity in wild-type M. xanthus under laboratory conditions. Instead, we propose Pkn14 modulates MrpC DNA binding in response to unknown environmental conditions. Interestingly, substitutions in the TTSS motif caused developmental defects that varied between biological replicates, revealing that MrpC plays a role in promoting a robust developmental phenotype.


Subject(s)
Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial/genetics , Myxococcus xanthus/growth & development , Myxococcus xanthus/genetics , Transcription Factors/genetics , Amino Acid Sequence/genetics , Bacterial Proteins/metabolism , DNA-Binding Proteins/genetics , Escherichia coli/metabolism , Phosphorylation , Protein Serine-Threonine Kinases/metabolism , Serine/genetics , Signal Transduction/genetics , Threonine/genetics , Transcription, Genetic/genetics
4.
Int J Mol Sci ; 20(10)2019 May 27.
Article in English | MEDLINE | ID: mdl-31137816

ABSTRACT

The coupling of transcription and translation is more than mere translation of an mRNA that is still being transcribed. The discovery of physical interactions between RNA polymerase and ribosomes has spurred renewed interest into this long-standing paradigm of bacterial molecular biology. Here, we provide a concise presentation of recent insights gained from super-resolution microscopy, biochemical, and structural work, including cryo-EM studies. Based on the presented data, we put forward a dynamic model for the interaction between RNA polymerase and ribosomes, in which the interactions are repeatedly formed and broken. Furthermore, we propose that long intervening nascent RNA will loop out and away during the forming the interactions between the RNA polymerase and ribosomes. By comparing the effect of the direct interactions between RNA polymerase and ribosomes with those that transcription factors NusG and RfaH mediate, we submit that two distinct modes of coupling exist: Factor-free and factor-mediated coupling. Finally, we provide a possible framework for transcription-translation coupling and elude to some open questions in the field.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , Peptide Elongation Factors/metabolism , Ribosomes/metabolism , Trans-Activators/metabolism , Transcription Factors/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Protein Biosynthesis , Transcription, Genetic
5.
Nucleic Acids Res ; 45(19): 11043-11055, 2017 Nov 02.
Article in English | MEDLINE | ID: mdl-28977553

ABSTRACT

In prokaryotes, RNA polymerase and ribosomes can bind concurrently to the same RNA transcript, leading to the functional coupling of transcription and translation. The interactions between RNA polymerase and ribosomes are crucial for the coordination of transcription with translation. Here, we report that RNA polymerase directly binds ribosomes and isolated large and small ribosomal subunits. RNA polymerase and ribosomes form a one-to-one complex with a micromolar dissociation constant. The formation of the complex is modulated by the conformational and functional states of RNA polymerase and the ribosome. The binding interface on the large ribosomal subunit is buried by the small subunit during protein synthesis, whereas that on the small subunit remains solvent-accessible. The RNA polymerase binding site on the ribosome includes that of the isolated small ribosomal subunit. This direct interaction between RNA polymerase and ribosomes may contribute to the coupling of transcription to translation.


Subject(s)
DNA-Directed RNA Polymerases/metabolism , Escherichia coli Proteins/metabolism , Protein Biosynthesis , Ribosome Subunits/metabolism , Transcription, Genetic , DNA-Directed RNA Polymerases/chemistry , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/chemistry , Kinetics , Models, Molecular , Protein Binding , Protein Domains , Ribosome Subunits/chemistry , Ribosome Subunits/genetics
6.
J Biol Chem ; 290(34): 20856-20864, 2015 Aug 21.
Article in English | MEDLINE | ID: mdl-26163516

ABSTRACT

The translational GTPase BipA regulates the expression of virulence and pathogenicity factors in several eubacteria. BipA-dependent expression of virulence factors occurs under starvation conditions, such as encountered during infection of a host. Under these conditions, BipA associates with the small ribosomal subunit. BipA also has a second function to promote the efficiency of late steps in biogenesis of large ribosomal subunits at low temperatures, presumably while bound to the ribosome. During starvation, the cellular concentration of stress alarmone guanosine-3', 5'-bis pyrophosphate (ppGpp) is increased. This increase allows ppGpp to bind to BipA and switch its binding specificity from ribosomes to small ribosomal subunits. A conformational change of BipA upon ppGpp binding could explain the ppGpp regulation of the binding specificity of BipA. Here, we present the structures of the full-length BipA from Escherichia coli in apo, GDP-, and ppGpp-bound forms. The crystal structure and small-angle x-ray scattering data of the protein with bound nucleotides, together with a thermodynamic analysis of the binding of GDP and of ppGpp to BipA, indicate that the ppGpp-bound form of BipA adopts the structure of the GDP form. This suggests furthermore, that the switch in binding preference only occurs when both ppGpp and the small ribosomal subunit are present. This molecular mechanism would allow BipA to interact with both the ribosome and the small ribosomal subunit during stress response.


Subject(s)
Apoproteins/chemistry , Enteropathogenic Escherichia coli/genetics , Enteropathogenic Escherichia coli/pathogenicity , Escherichia coli Proteins/chemistry , GTP Phosphohydrolases/chemistry , Guanosine Diphosphate/chemistry , Phosphoproteins/chemistry , Pyrophosphatases/chemistry , Apoproteins/genetics , Apoproteins/metabolism , Crystallography, X-Ray , Enteropathogenic Escherichia coli/enzymology , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , GTP Phosphohydrolases/genetics , GTP Phosphohydrolases/metabolism , Gene Expression , Guanosine Diphosphate/metabolism , Kinetics , Models, Molecular , Phosphoproteins/genetics , Phosphoproteins/metabolism , Protein Binding , Protein Structure, Tertiary , Pyrophosphatases/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Ribosome Subunits, Small/genetics , Ribosome Subunits, Small/metabolism , Signal Transduction , Stress, Physiological , Thermodynamics , Virulence
SELECTION OF CITATIONS
SEARCH DETAIL
...