Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
1.
Front Microbiol ; 15: 1335985, 2024.
Article in English | MEDLINE | ID: mdl-38322314

ABSTRACT

Five mycobacterial isolates from sewage were classified as members of the genus Mycobacterium but presented inconclusive species assignments. Thus, the isolates (MYC017, MYC098, MYC101, MYC123 and MYC340) were analyzed by phenotypical, biochemical, matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and genomic features to clarify their taxonomic position. Phenotypic analysis and biochemical tests did not distinguish these isolates from other non-pigmented mycobacteria. In contrast, MALDI-TOF MS analysis showed that isolates were not related to any previously described Mycobacterium species. Comparative genomic analysis showed values of ANI and dDDH between 81.59-85.56% and 24.4-28.8%, respectively, when compared to the genomes of species of this genus. In addition, two (MYC101 and MYC123) presented indistinguishable protein spectra from each other and values of ANI = 98.57% and dDDH = 97.3%, therefore being considered as belonging to the same species. Phylogenetic analysis grouped the five isolates within the Mycobacterium terrae complex (MTC) but in a specific subclade and separated from the species already described and supported by 100% bootstrap value, confirming that they are part of this complex but different from earlier described species. According to these data, we propose the description of four new species belonging to the Mycobacterium genus: (i) Mycobacterium defluvii sp. nov. strain MYC017T (= ATCC TSD-296T = JCM 35364T), (ii) Mycobacterium crassicus sp. nov. strain MYC098T (= ATCC TSD-297T = JCM 35365T), (iii) Mycobacterium zoologicum sp. nov. strain MYC101T (= ATCC TSD-298T = JCM 35366T) and MYC123 (= ATCC BAA-3216 = JCM 35367); and (iv) Mycobacterium nativiensis sp. nov. strain MYC340T (= ATCC TSD-299T = JCM 35368T).

2.
Microorganisms ; 11(6)2023 May 27.
Article in English | MEDLINE | ID: mdl-37374915

ABSTRACT

Polycyclic aromatic hydrocarbons (PAHs) are chemical compounds that are widespread in the environment, arising from the incomplete combustion of organic material, as well as from human activities involving petrol exploitation, petrochemical industrial waste, gas stations, and environmental disasters. PAHs of high molecular weight, such as pyrene, have carcinogenic and mutagenic effects and are considered pollutants. The microbial degradation of PAHs occurs through the action of multiple dioxygenase genes (nid), which are localized in genomic island denominate region A, and cytochrome P450 monooxygenases genes (cyp) dispersed in the bacterial genome. This study evaluated pyrene degradation by five isolates of Mycolicibacterium austroafricanum using 2,6-dichlorophenol indophenol (DCPIP assay), gas chromatography/mass spectrometry (CG/MS), and genomic analyses. Two isolates (MYC038 and MYC040) exhibited pyrene degradation indexes of 96% and 88%, respectively, over a seven-day incubation period. Interestingly, the genomic analyses showed that the isolates do not have nid genes, which are involved in PAH biodegradation, despite their ability to degrade pyrene, suggesting that degradation may occur due to the presence of cyp150 genes, or even genes that have not yet been described. To the best of our knowledge, this is the first report of isolates without nid genes demonstrating the ability to degrade pyrene.

3.
Cells Dev ; 171: 203802, 2022 09.
Article in English | MEDLINE | ID: mdl-35934285

ABSTRACT

Segments are repeated anatomical units forming the body of insects. In Drosophila, the specification of the body takes place during the blastoderm through the segmentation cascade. Pair-rule genes such as hairy (h), even-skipped (eve), runt (run), and fushi-tarazu (ftz) are of the intermediate level of the cascade and each pair-rule gene is expressed in seven transversal stripes along the antero-posterior axis of the embryo. Stripes are formed by independent cis-regulatory modules (CRMs) under the regulation of transcription factors of maternal source and of gap proteins of the first level of the cascade. The initial blastoderm of Drosophila is a syncytium and it also coincides with the mid-blastula transition when thousands of zygotic genes are transcribed and their products are able to diffuse in the cytoplasm. Thus, we anticipated a complex regulation of the CRMs of the pair-rule stripes. The CRMs of h 1, eve 1, run 1, ftz 1 are able to be activated by bicoid (bcd) throughout the anterior blastoderm and several lines of evidence indicate that they are repressed by the anterior gap genes slp1 (sloppy-paired 1), tll (tailless) and hkb (huckebein). The modest activity of these repressors led to the premise of a combinatorial mechanism regulating the expression of the CRMs of h 1, eve 1, run 1, ftz 1 in more anterior regions of the embryo. We tested this possibility by progressively removing the repression activities of slp1, tll and hkb. In doing so, we were able to expose a mechanism of additive repression limiting the anterior borders of stripes 1. Stripes 1 respond depending on their distance from the anterior end and repressors operating at different levels.


Subject(s)
Blastoderm , Drosophila Proteins , Animals , Blastoderm/metabolism , Drosophila/genetics , Drosophila Proteins/genetics , Homeodomain Proteins/genetics , Transcription Factors/genetics
4.
Microorganisms ; 10(5)2022 Apr 27.
Article in English | MEDLINE | ID: mdl-35630358

ABSTRACT

Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.

5.
Biogerontology ; 21(5): 559-575, 2020 10.
Article in English | MEDLINE | ID: mdl-32189112

ABSTRACT

Human HSP27 is a small heat shock protein that modulates the ability of cells to respond to heat shock and oxidative stress, and also functions as a chaperone independent of ATP, participating in the proteasomal degradation of proteins. The expression of HSP27 is associated with survival in mammalian cells. In cancer cells, it confers resistance to chemotherapy; in neurons, HSP27 has a positive effect on neuronal viability in models of Alzheimer's and Parkinson's diseases. To better understand the mechanism by which HSP27 expression contributes to cell survival, we expressed human HSP27 in the budding yeast Saccharomyces cerevisiae under control of different mutant TEF promoters, that conferred nine levels of graded basal expression, and showed that replicative lifespan and proteasomal activity increase as well as the resistance to oxidative and thermal stresses. The profile of these phenotypes display a dose-response effect characteristic of hormesis, an adaptive phenomenon that is observed when cells are exposed to increasing amounts of stress or toxic substances. The hormetic response correlates with changes in expression levels of HSP27 and also with its oligomeric states when correlated to survival assays. Our results indicate that fine tuning of HSP27 concentration could be used as a strategy for cancer therapy, and also for improving neuronal survival in neurodegenerative diseases.


Subject(s)
HSP27 Heat-Shock Proteins , Hormesis , Saccharomyces cerevisiae , Animals , HSP27 Heat-Shock Proteins/metabolism , Heat-Shock Proteins , Heat-Shock Response , Humans , Molecular Chaperones , Oxidative Stress , Saccharomyces cerevisiae/metabolism
6.
Front Genet ; 10: 725, 2019.
Article in English | MEDLINE | ID: mdl-31507629

ABSTRACT

Genomics research has produced an exponential amount of data. However, the genetic knowledge pertaining to certain phenotypic characteristics is lacking. Also, a considerable part of these genomes have coding sequences (CDSs) with unknown functions, posing additional challenges to researchers. Phylogenetically close microorganisms share much of their CDSs, and certain phenotypes unique to a set of microorganisms may be the result of the genes found exclusively in those microorganisms. This study presents the GTACG framework, an easy-to-use tool for identifying in the subgroups of bacterial genomes whose microorganisms have common phenotypic characteristics, to find data that differentiates them from other associated genomes in a simple and fast way. The GTACG analysis is based on the formation of homologous CDS clusters from local alignments. The front-end is easy to use, and the installation packages have been developed to enable users lacking knowledge of programming languages or bioinformatics analyze high-throughput data using the tool. The validation of the GTACG framework has been carried out based on a case report involving a set of 161 genomes from the Xanthomonadaceae family, in which 19 families of orthologous proteins were found in 90% of the plant-associated genomes, allowing the identification of the proteins potentially associated with adaptation and virulence in plant tissue. The results show the potential use of GTACG in the search for new targets for molecular studies, and GTACG can be used as a research tool by biologists who lack advanced knowledge in the use of computational tools for bacterial comparative genomics.

7.
BMC Genomics ; 20(1): 700, 2019 Sep 09.
Article in English | MEDLINE | ID: mdl-31500575

ABSTRACT

BACKGROUND: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. RESULTS: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination at some branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. CONCLUSIONS: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes.


Subject(s)
Evolution, Molecular , Genetic Variation , Genomics , Phylogeography , Xanthomonas/genetics , Xanthomonas/physiology
8.
Data Brief ; 23: 103806, 2019 Apr.
Article in English | MEDLINE | ID: mdl-31372451

ABSTRACT

DNA synthesis and homologous recombination can be used to simplify molecular cloning and to make synthetic biology easily accessible (M.J. Czar et al., 2009). However, the design of overlapping DNA fragments to construct large molecules is time-consuming and requires verification of several parameters to ensure that fragment synthesis is attainable, given the restrictions found in chemical synthesis of DNA. OVERFRAG is a web-based tool that generates overlapping DNA fragments to assemble either in yeast cells by Gap Repair (H. Ma et al., 1987) or in vitro by (D.G. Gibson et al., 2009) and In-Fusion (B. Zhu et al., 2007) methods. The fragments generated are suitable for chemical synthesis and molecular assembly. Some possible uses include cDNA cloning, design of chimeric antibodies and synthetic biology applications. Web tool is freely available at http://www.each.usp.br/digiampietri/overfrag.

9.
BMC genomics, v. 20, 700, sep. 2019
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2830

ABSTRACT

Background: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. Results: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination atsome branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. Conclusions: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes

10.
BMC genomics ; 20: 700, 2019.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib17182

ABSTRACT

Background: Xanthomonas citri subsp. citri pathotypes cause bacterial citrus canker, being responsible for severe agricultural losses worldwide. The A pathotype has a broad host spectrum, while A* and Aw are more restricted both in hosts and in geography. Two previous phylogenomic studies led to contrasting well-supported clades for sequenced genomes of these pathotypes. No extensive biogeographical or divergence dating analytic approaches have been so far applied to available genomes. Results: Based on a larger sampling of genomes than in previous studies (including six new genomes sequenced by our group, adding to a total of 95 genomes), phylogenomic analyses resulted in different resolutions, though overall indicating that A + AW is the most likely true clade. Our results suggest the high degree of recombination atsome branches and the fast diversification of lineages are probable causes for this phylogenetic blurring effect. One of the genomes analyzed, X. campestris pv. durantae, was shown to be an A* strain; this strain has been reported to infect a plant of the family Verbenaceae, though there are no reports of any X. citri subsp. citri pathotypes infecting any plant outside the Citrus genus. Host reconstruction indicated the pathotype ancestor likely had plant hosts in the family Fabaceae, implying an ancient jump to the current Rutaceae hosts. Extensive dating analyses indicated that the origin of X. citri subsp. citri occurred more recently than the main phylogenetic splits of Citrus plants, suggesting dispersion rather than host-directed vicariance as the main driver of geographic expansion. An analysis of 120 pathogenic-related genes revealed pathotype-associated patterns of presence/absence. Conclusions: Our results provide novel insights into the evolutionary history of X. citri subsp. citri as well as a sound phylogenetic foundation for future evolutionary and genomic studies of its pathotypes

11.
J Comput Biol ; 2018 Aug 13.
Article in English | MEDLINE | ID: mdl-30102565

ABSTRACT

Homologous sequences are widely used to understand the functions of certain genes or proteins. However, there is no consensus to solve the automatic assignment of functions to protein problem and many algorithms have different ways of identifying homologous clusters in a given set of sequences. In this article, we present an algorithm to deal with specific sets, the set of coding sequences obtained from phylogenetically close genomes (of the same species, genus, or family). When modeled as a graph, these sets have their own characteristics: they form more homogeneous and denser clusters. To solve this problem, our algorithm makes use of the clustering coefficient, which maximization can lead to the expected results from the biological point of view. In addition, we also present an algorithm for the identification of sequence domains based on graph topology. We also compared our results with those of the TribeMCL tool, a well-established algorithm of the area.

12.
Mech Dev ; 154: 270-276, 2018 12.
Article in English | MEDLINE | ID: mdl-30081091

ABSTRACT

Understanding the evolution of the developmental programs active during dipteran embryogenesis depends on comparative studies. As a counterpoint to the intensively investigated and highly derived cyclorrhaphan flies that include the model organism Drosophila melanogaster, we are studying the basal Diptera Bradysia hygida, a member of the Sciaridae family that is amenable to laboratory cultivation. Here we describe the B. hygida embryogenesis, which lasts 9 days at 22 °C. The use of standard fixation D. melanogaster protocols resulted in embryos refractory to DAPI staining and to overcome this, a new enzyme-based method was developed. Calcofluor-White staining of enzimatically-treated embryos revealed that this method removes chitin from the serosal cuticle surrounding the B. hygida embryo. Chitin is one of the main components of serosal cuticles and searches in a B. hygida embryonic transcriptome database revealed conservation of the chitin synthesis pathway, further supporting the occurrence of chitin biosynthesis in B. hygida embryos. Combining the enzymatic treatment protocol with the use of both DIC and fluorescence microscopy allowed the first complete description of the B. hygida embryogenesis. Our results constitute an important step towards the understanding of early development of a basal Diptera and pave the way for future evo-devo studies.


Subject(s)
Diptera/genetics , Embryonic Development/genetics , Animals , Biological Evolution , Chitin/genetics , Drosophila melanogaster/genetics , Transcriptome/genetics
13.
Sci Rep ; 7(1): 16133, 2017 11 23.
Article in English | MEDLINE | ID: mdl-29170530

ABSTRACT

The Xanthomonadaceae family consists of species of non-pathogenic and pathogenic γ-proteobacteria that infect different hosts, including humans and plants. In this study, we performed a comparative analysis using 69 fully sequenced genomes belonging to this family, with a focus on identifying proteins enriched in phytopathogens that could explain the lifestyle and the ability to infect plants. Using a computational approach, we identified seven phytopathogen-enriched protein families putatively secreted by type II secretory system: PheA (CM-sec), LipA/LesA, VirK, and four families involved in N-glycan degradation, NixE, NixF, NixL, and FucA1. In silico and phylogenetic analyses of these protein families revealed they all have orthologs in other phytopathogenic or symbiotic bacteria, and are involved in the modulation and evasion of the immune system. As a proof of concept, we performed a biochemical characterization of LipA from Xac306 and verified that the mutant strain lost most of its lipase and esterase activities and displayed reduced virulence in citrus. Since this study includes closely related organisms with distinct lifestyles and highlights proteins directly related to adaptation inside plant tissues, novel approaches might use these proteins as biotechnological targets for disease control, and contribute to our understanding of the coevolution of plant-associated bacteria.


Subject(s)
Bacterial Proteins/metabolism , Plant Diseases/microbiology , Xanthomonadaceae/metabolism , Xanthomonadaceae/pathogenicity , Bacterial Proteins/genetics , Phylogeny , Virulence
14.
Front Microbiol ; 8: 789, 2017.
Article in English | MEDLINE | ID: mdl-28533767

ABSTRACT

Isolates of the Mycobacterium chelonae-M. abscessus complex are subdivided into four clusters (CHI to CHIV) in the INNO-LiPA® Mycobacterium spp DNA strip assay. A considerable phenotypic variability was observed among isolates of the CHII cluster. In this study, we examined the diversity of 26 CHII cluster isolates by phenotypic analysis, drug susceptibility testing, whole genome sequencing and single-gene analysis. Pairwise genome comparisons were performed using several approaches, including average nucleotide identity (ANI) and genome-to-genome distance (GGD) among others. Based on ANI and GGD the isolates were identified as M. chelonae (14 isolates), M. franklinii (2 isolates) and M. salmoniphium (1 isolate). The remaining 9 isolates were subdivided into three novel putative genomospecies. Phenotypic analyses including drug susceptibility testing, as well as whole genome comparison by TETRA and delta differences, were not helpful in separating the groups revealed by ANI and GGD. The analysis of standard four conserved genomic regions showed that rpoB alone and the concatenated sequences clearly distinguished the taxonomic groups delimited by whole genome analyses. In conclusion, the CHII INNO-LiPa is not a homogeneous cluster; on the contrary, it is composed of closely related different species belonging to the M. chelonae-M. abscessus complex and also several unidentified isolates. The detection of these isolates, putatively novel species, indicates a wider inner variability than the presently known in this complex.

15.
Mech Dev ; 144(Pt B): 156-162, 2017 04.
Article in English | MEDLINE | ID: mdl-27773632

ABSTRACT

We investigated the hypothesis that several transcriptional repressors are necessary to set the boundaries of anterior pair-rule stripes in Drosophila. Specifically, we tested whether Tailless (Tll) is part of a repression mechanism that correctly sets the anterior boundaries of hairy 1 (h 1) and even-skipped 1 (eve 1) stripes. Single mutant tll embryos displayed subtle deviations from the normal positions of h 1 and eve 1 stripes. Moreover, we observed stronger stripe deviations in embryos lacking both Tll and Sloppy-paired 1 (Slp 1), a common repressor for anterior pair-rule stripes. Using h 1 and eve 1 reporter constructs in the genetic assays, we provided further evidence that interference with normal mechanisms of stripe expression is mediated by Tll repression. Indeed, Tll represses both h 1 and eve 1 reporter stripes when misexpressed. Investigating the expression of other anterior gap genes in different genetic backgrounds and in the misexpression assays strengthened Tll direct repression in the regulation of h 1 and eve 1. Our results are consistent with tll being a newly-identified component of a combinatorial network of repressor genes that control pair-rule stripe formation in the anterior blastoderm of Drosophila.


Subject(s)
Basic Helix-Loop-Helix Transcription Factors/genetics , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Gene Expression Regulation, Developmental , Homeodomain Proteins/genetics , Repressor Proteins/genetics , Repressor Proteins/physiology , Transcription Factors/genetics , Animals , Basic Helix-Loop-Helix Transcription Factors/metabolism , Blastoderm/cytology , Blastoderm/physiology , Drosophila Proteins/metabolism , Drosophila melanogaster/embryology , Drosophila melanogaster/metabolism , Embryonic Development , Gene Silencing , Homeodomain Proteins/metabolism , Repressor Proteins/metabolism , Transcription Factors/metabolism
16.
Sci Rep ; 6: 38915, 2016 12 12.
Article in English | MEDLINE | ID: mdl-27941956

ABSTRACT

Composting is a promising source of new organisms and thermostable enzymes that may be helpful in environmental management and industrial processes. Here we present results of metagenomic- and metatranscriptomic-based analyses of a large composting operation in the São Paulo Zoo Park. This composting exhibits a sustained thermophilic profile (50 °C to 75 °C), which seems to preclude fungal activity. The main novelty of our study is the combination of time-series sampling with shotgun DNA, 16S rRNA gene amplicon, and metatranscriptome high-throughput sequencing, enabling an unprecedented detailed view of microbial community structure, dynamics, and function in this ecosystem. The time-series data showed that the turning procedure has a strong impact on the compost microbiota, restoring to a certain extent the population profile seen at the beginning of the process; and that lignocellulosic biomass deconstruction occurs synergistically and sequentially, with hemicellulose being degraded preferentially to cellulose and lignin. Moreover, our sequencing data allowed near-complete genome reconstruction of five bacterial species previously found in biomass-degrading environments and of a novel biodegrading bacterial species, likely a new genus in the order Bacillales. The data and analyses provided are a rich source for additional investigations of thermophilic composting microbiology.


Subject(s)
Composting , Microbial Consortia , Soil Microbiology , Bacteria/genetics , Biodegradation, Environmental , Biomass , Gene Expression Profiling , High-Throughput Nucleotide Sequencing , Lignin/metabolism , Metagenomics , RNA, Ribosomal, 16S/genetics
17.
BMC Microbiol ; 16(1): 111, 2016 06 17.
Article in English | MEDLINE | ID: mdl-27316672

ABSTRACT

BACKGROUND: A large collection of sequenced mycobacteriophages capable of infecting a single host strain of Mycobacterium smegmatis shows considerable genomic diversity with dozens of distinctive types (clusters) and extensive variation within those sharing evident nucleotide sequence similarity. Here we profiled the mycobacterial components of a large composting system at the São Paulo zoo. RESULTS: We isolated and sequenced eight mycobacteriophages using Mycobacterium smegmatis mc(2)155 as a host. None of these eight phages infected any of mycobacterial strains isolated from the same materials. The phage isolates span considerable genomic diversity, including two phages (Barriga, Nhonho) related to Subcluster A1 phages, two Cluster B phages (Pops, Subcluster B1; Godines, Subcluster B2), three Subcluster F1 phages (Florinda, Girafales, and Quico), and Madruga, a relative of phage Patience with which it constitutes the new Cluster U. Interestingly, the two Subcluster A1 phages and the three Subcluster F1 phages have genomic relationships indicating relatively recent evolution within a geographically isolated niche in the composting system. CONCLUSIONS: We predict that composting systems such as those used to obtain these mycobacteriophages will be a rich source for the isolation of additional phages that will expand our view of bacteriophage diversity and evolution.


Subject(s)
Mycobacteriophages/genetics , Mycobacteriophages/isolation & purification , Mycobacterium/genetics , Mycobacterium/virology , Soil Microbiology , Soil , Bacteriophages/genetics , Base Sequence , Brazil , DNA, Bacterial/genetics , DNA, Viral/genetics , Evolution, Molecular , Genes, Bacterial , Genetic Variation , Genome, Viral , Multigene Family , Mycobacteriophages/classification , Mycobacterium/classification , Mycobacterium/isolation & purification , Mycobacterium smegmatis/classification , Mycobacterium smegmatis/genetics , Mycobacterium smegmatis/isolation & purification , Mycobacterium smegmatis/virology , Phylogeny
18.
PLoS One ; 10(5): e0129065, 2015.
Article in English | MEDLINE | ID: mdl-26010822

ABSTRACT

Scientific collaboration has been studied by researchers for decades. Several approaches have been adopted to address the question of how collaboration has evolved in terms of publication output, numbers of coauthors, and multidisciplinary trends. One particular type of collaboration that has received very little attention concerns advisor and advisee relationships. In this paper, we examine this relationship for the researchers who are involved in the area of Exact and Earth Sciences in Brazil and its eight subareas. These pairs are registered in the Lattes Platform that manages the individual curricula vitae of Brazilian researchers. The individual features of these academic researchers and their coauthoring relationships were investigated. We have found evidence that there exists positive correlation between time of advisor-advisee relationship with the advisee's productivity. Additionally, there has been a gradual decline in advisor-advisee coauthoring over a number of years as measured by the Kulczynski index, which could be interpreted as decline of the dependence.


Subject(s)
Interpersonal Relations , Research Personnel , Authorship , Bibliometrics , Brazil , Earth Sciences , Humans , Mentors
19.
PLoS One ; 9(4): e94541, 2014.
Article in English | MEDLINE | ID: mdl-24728179

ABSTRACT

Research productivity assessment is increasingly relevant for allocation of research funds. On one hand, this assessment is challenging because it involves both qualitative and quantitative analysis of several characteristics, most of them subjective in nature. On the other hand, current tools and academic social networks make bibliometric data web-available to everyone for free. Those tools, especially when combined with other data, are able to create a rich environment from which information on research productivity can be extracted. In this context, our work aims at characterizing the Brazilian Computer Science graduate programs and the relationship among themselves. We (i) present views of the programs from different perspectives, (ii) rank the programs according to each perspective and a combination of them, (iii) show correlation between assessment metrics, (iv) discuss how programs relate to another, and (v) infer aspects that boost programs' research productivity. The results indicate that programs with a higher insertion in the coauthorship network topology also possess a higher research productivity between 2004 and 2009.


Subject(s)
Computer Literacy , Education, Graduate , Authorship , Brazil , Principal Component Analysis , Program Evaluation , Social Support , Statistics, Nonparametric
20.
PLoS One ; 8(4): e61928, 2013.
Article in English | MEDLINE | ID: mdl-23637931

ABSTRACT

Composting operations are a rich source for prospection of biomass degradation enzymes. We have analyzed the microbiomes of two composting samples collected in a facility inside the São Paulo Zoo Park, in Brazil. All organic waste produced in the park is processed in this facility, at a rate of four tons/day. Total DNA was extracted and sequenced with Roche/454 technology, generating about 3 million reads per sample. To our knowledge this work is the first report of a composting whole-microbial community using high-throughput sequencing and analysis. The phylogenetic profiles of the two microbiomes analyzed are quite different, with a clear dominance of members of the Lactobacillus genus in one of them. We found a general agreement of the distribution of functional categories in the Zoo compost metagenomes compared with seven selected public metagenomes of biomass deconstruction environments, indicating the potential for different bacterial communities to provide alternative mechanisms for the same functional purposes. Our results indicate that biomass degradation in this composting process, including deconstruction of recalcitrant lignocellulose, is fully performed by bacterial enzymes, most likely by members of the Clostridiales and Actinomycetales orders.


Subject(s)
Biodiversity , Biomass , Metagenomics , Soil Microbiology , Bacteria/classification , Bacteria/genetics , Base Composition , Brazil , Cluster Analysis , Gene Order , Lactobacillus/classification , Lactobacillus/genetics , Lactobacillus/metabolism , Lignin/metabolism , Molecular Sequence Annotation , Pectins/metabolism , RNA, Ribosomal, 16S , Sequence Analysis, DNA
SELECTION OF CITATIONS
SEARCH DETAIL
...