Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Neurotoxicology ; 103: 105-114, 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38857675

ABSTRACT

Chronic exposure to elevated levels of manganese (Mn) causes a neurological disorder referred to as manganism, presenting symptoms similar to those of Parkinson's disease (PD), yet the mechanisms by which Mn induces its neurotoxicity are not completely understood. 17ß-estradiol (E2) affords neuroprotection against Mn toxicity in various neural cell types including microglia. Our previous studies have shown that leucine-rich repeat kinase 2 (LRRK2) mediates Mn-induced inflammatory toxicity in microglia. The LRRK2 promoter sequences contain three putative binding sites of the transcription factor (TF), specificity protein 1 (Sp1), which increases LRRK2 promoter activity. In the present study, we tested if the Sp1-LRRK2 pathway plays a role in both Mn toxicity and the protection afforded by E2 against Mn toxicity in BV2 microglial cells. The results showed that Mn induced cytotoxicity, oxidative stress, and tumor necrosis factor-α production, which were attenuated by an LRRK2 inhibitor, GSK2578215A. The overexpression of Sp1 increased LRRK2 promoter activity, mRNA and protein levels, while inhibition of Sp1 with its pharmacological inhibitor, mithramycin A, attenuated the Mn-induced increases in LRRK2 expression. Furthermore, E2 attenuated the Mn-induced Sp1 expression by decreasing the expression of Sp1 via the promotion of the ubiquitin-dependent degradation pathway, which was accompanied by increased protein levels of RING finger protein 4, the E3-ligase of Sp1, Sp1 ubiquitination, and SUMOylation. Taken together, our novel findings suggest that Sp1 serves as a critical TF in Mn-induced LRRK2 expression as well as in the protection afforded by E2 against Mn toxicity through reduction of LRRK2 expression in microglia.

2.
J Biol Chem ; 299(7): 104879, 2023 07.
Article in English | MEDLINE | ID: mdl-37269951

ABSTRACT

Chronic manganese (Mn) exposure can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1ß, and TNF-α in the striatum and midbrain of WT mice, and these effects were more pronounced in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 µM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1ß, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was elevated further in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated G2019S-expressing BV2 microglia caused greater toxicity to the cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10 which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.


Subject(s)
Manganese Poisoning , Manganese , Mice , Humans , Animals , Manganese/metabolism , Microglia/metabolism , Inflammasomes/genetics , Inflammasomes/metabolism , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Tumor Necrosis Factor-alpha/metabolism , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/genetics , Leucine-Rich Repeat Serine-Threonine Protein Kinase-2/metabolism , Manganese Poisoning/metabolism , Mutation , Autophagy
3.
bioRxiv ; 2023 Apr 05.
Article in English | MEDLINE | ID: mdl-37066140

ABSTRACT

Chronic exposure to manganese (Mn) can lead to manganism, a neurological disorder sharing common symptoms with Parkinson's disease (PD). Studies have shown that Mn can increase the expression and activity of leucine-rich repeat kinase 2 (LRRK2), leading to inflammation and toxicity in microglia. LRRK2 G2019S mutation also elevates LRRK2 kinase activity. Thus, we tested if Mn-increased microglial LRRK2 kinase is responsible for Mn-induced toxicity, and exacerbated by G2019S mutation, using WT and LRRK2 G2019S knock-in mice, and BV2 microglia. Mn (30 mg/kg, nostril instillation, daily for 3 weeks) caused motor deficits, cognitive impairments, and dopaminergic dysfunction in WT mice, which were exacerbated in G2019S mice. Mn induced proapoptotic Bax, NLRP3 inflammasome, IL-1ß and TNF-α in the striatum and midbrain of WT mice, and these effects were exacerbated in G2019S mice. BV2 microglia were transfected with human LRRK2 WT or G2019S, followed by Mn (250 µM) exposure to better characterize its mechanistic action. Mn increased TNF-α, IL-1ß, and NLRP3 inflammasome activation in BV2 cells expressing WT LRRK2, which was exacerbated in G2019S-expressing cells, while pharmacological inhibition of LRRK2 mitigated these effects in both genotypes. Moreover, the media from Mn-treated BV2 microglia expressing G2019S caused greater toxicity to cath.a-differentiated (CAD) neuronal cells compared to media from microglia expressing WT. Mn-LRRK2 activated RAB10, which was exacerbated in G2019S. RAB10 played a critical role in LRRK2-mediated Mn toxicity by dysregulating the autophagy-lysosome pathway, and NLRP3 inflammasome in microglia. Our novel findings suggest that microglial LRRK2 via RAB10 plays a critical role in Mn-induced neuroinflammation.

4.
Glia ; 71(2): 450-466, 2023 02.
Article in English | MEDLINE | ID: mdl-36300569

ABSTRACT

The transcription factor Yin Yang 1 (YY1) is ubiquitously expressed in mammalian cells, regulating the expression of a variety of genes involved in proliferation, differentiation, and apoptosis in a context-dependent manner. While it is well-established that global YY1 knockout (KO) leads to embryonic death in mice and that YY1 deletion in neurons or oligodendrocytes induces impaired brain function, the role of astrocytic YY1 in the brain remains unknown. We investigated the role of astrocytic YY1 in the brain using a glial fibrillary acidic protein (GFAP)-specific YY1 conditional KO (YY1 cKO) mouse model to delete astrocytic YY1. Astrocytic YY1 cKO mice were tested for behavioral phenotypes, such as locomotor activity, coordination, and cognition, followed by an assessment of relevant biological pathways using RNA-sequencing analysis, immunoblotting, and immunohistochemistry in the cortex, midbrain, and cerebellum. YY1 cKO mice showed abnormal phenotypes, movement deficits, and cognitive dysfunction. At the molecular level, astrocytic YY1 deletion altered the expression of genes associated with proliferation and differentiation, p53/caspase apoptotic pathways, oxidative stress response, and inflammatory signaling including NF-κB, STAT, and IRF in all regions. Astrocytic YY1 deletion significantly increased the expression of GFAP as astrocytic activation and Iba1 as microglial activation, indicating astrocytic YY1 deletion activated microglia as well. Accordingly, multiple inflammatory cytokines and chemokines including TNF-α and CXCL10 were elevated. Combined, these novel findings suggest that astrocytic YY1 is a critical transcription factor for normal brain development and locomotor activity, motor coordination, and cognition. Astrocytic YY1 is also essential in preventing pathological oxidative stress, apoptosis, and inflammation.


Subject(s)
YY1 Transcription Factor , Yin-Yang , Mice , Animals , YY1 Transcription Factor/genetics , YY1 Transcription Factor/metabolism , Apoptosis , Inflammation , Oxidative Stress , Brain/metabolism , Mammals/metabolism
5.
Glia ; 70(10): 1886-1901, 2022 10.
Article in English | MEDLINE | ID: mdl-35638297

ABSTRACT

Chronic manganese (Mn) overexposure causes a neurological disorder, referred to as manganism, exhibiting symptoms similar to parkinsonism. Dysfunction of the repressor element-1 silencing transcription factor (REST) is associated with various neurodegenerative diseases such as Parkinson's disease, Alzheimer's disease, and Mn-induced neurotoxicity, but its cellular and molecular mechanisms have yet to be fully characterized. Although neuronal REST is known to be neuroprotective, the role of astrocytic REST in neuroprotection remains to be established. We investigated if astrocytic REST in the striatal region of the mouse brain where Mn preferentially accumulates plays a role in Mn-induced neurotoxicity. Striatal astrocytic REST was deleted by infusion of adeno-associated viral vectors containing sequences of the glial fibrillary acidic protein promoter-driven Cre recombinase into the striatum of RESTflox/flox mice for 3 weeks, followed by Mn exposure (30 mg/kg, daily, intranasally) for another 3 weeks. Striatal astrocytic REST deletion exacerbated Mn-induced impairment of locomotor activity and cognitive function with further decrease in Mn-reduced protein levels of tyrosine hydroxylase and glutamate transporter 1 (GLT-1) in the striatum. Astrocytic REST deletion also exacerbated the Mn-induced proinflammatory mediator COX-2, as well as cytokines such as TNF-α, IL-1ß, and IL-6, in the striatum. Mn-induced detrimental astrocytic products such as proinflammatory cytokines on neuronal toxicity were attenuated by astrocytic REST overexpression, but exacerbated by REST inhibition in an in vitro model using primary human astrocytes and Lund human mesencephalic (LUHMES) neuronal culture. These findings indicate that astrocytic REST plays a critical role against Mn-induced neurotoxicity by modulating astrocytic proinflammatory factors and GLT-1.


Subject(s)
Astrocytes , Manganese Poisoning , Repressor Proteins , Animals , Astrocytes/metabolism , Gene Deletion , Humans , Manganese/toxicity , Manganese Poisoning/genetics , Mice , Repressor Proteins/genetics
6.
Front Pharmacol ; 13: 1011947, 2022.
Article in English | MEDLINE | ID: mdl-36605395

ABSTRACT

Chronic exposure to elevated levels of manganese via occupational or environmental settings causes a neurological disorder known as manganism, resembling the symptoms of Parkinson's disease, such as motor deficits and cognitive impairment. Numerous studies have been conducted to characterize manganese's neurotoxicity mechanisms in search of effective therapeutics, including natural and synthetic compounds to treat manganese toxicity. Several potential molecular targets of manganese toxicity at the epigenetic and transcriptional levels have been identified recently, which may contribute to develop more precise and effective gene therapies. This review updates findings on manganese-induced neurotoxicity mechanisms on intracellular insults such as oxidative stress, inflammation, excitotoxicity, and mitophagy, as well as transcriptional dysregulations involving Yin Yang 1, RE1-silencing transcription factor, transcription factor EB, and nuclear factor erythroid 2-related factor 2 that could be targets of manganese neurotoxicity therapies. This review also features intracellular proteins such as PTEN-inducible kinase 1, parkin, sirtuins, leucine-rich repeat kinase 2, and α-synuclein, which are associated with manganese-induced dysregulation of autophagy/mitophagy. In addition, newer therapeutic approaches to treat manganese's neurotoxicity including natural and synthetic compounds modulating excitotoxicity, autophagy, and mitophagy, were reviewed. Taken together, in-depth mechanistic knowledge accompanied by advances in gene and drug delivery strategies will make significant progress in the development of reliable therapeutic interventions against manganese-induced neurotoxicity.

7.
J Biol Chem ; 297(6): 101372, 2021 12.
Article in English | MEDLINE | ID: mdl-34756885

ABSTRACT

Chronic exposure to high levels of manganese (Mn) leads to manganism, a neurological disorder with similar symptoms to those inherent to Parkinson's disease. However, the underlying mechanisms of this pathological condition have yet to be established. Since the human excitatory amino acid transporter 2 (EAAT2) (glutamate transporter 1 in rodents) is predominantly expressed in astrocytes and its dysregulation is involved in Mn-induced excitotoxic neuronal injury, characterization of the mechanisms that mediate the Mn-induced impairment in EAAT2 function is crucial for the development of novel therapeutics against Mn neurotoxicity. Repressor element 1-silencing transcription factor (REST) exerts protective effects in many neurodegenerative diseases. But the effects of REST on EAAT2 expression and ensuing neuroprotection are unknown. Given that the EAAT2 promoter contains REST binding sites, the present study investigated the role of REST in EAAT2 expression at the transcriptional level in astrocytes and Mn-induced neurotoxicity in an astrocyte-neuron coculture system. The results reveal that astrocytic REST positively regulates EAAT2 expression with the recruitment of an epigenetic modifier, cAMP response element-binding protein-binding protein/p300, to its consensus binding sites in the EAAT2 promoter. Moreover, astrocytic overexpression of REST attenuates Mn-induced reduction in EAAT2 expression, leading to attenuation of glutamate-induced neurotoxicity in the astrocyte-neuron coculture system. Our findings demonstrate that astrocytic REST plays a critical role in protection against Mn-induced neurotoxicity by attenuating Mn-induced EAAT2 repression and the ensuing excitotoxic dopaminergic neuronal injury. This indicates that astrocytic REST could be a potential molecular target for the treatment of Mn toxicity and other neurological disorders associated with EAAT2 dysregulation.


Subject(s)
Dopaminergic Neurons/metabolism , Excitatory Amino Acid Transporter 2/metabolism , Manganese/pharmacology , Repressor Proteins/physiology , Up-Regulation/physiology , Animals , Astrocytes/metabolism , Cell Line , Dopaminergic Neurons/drug effects , Excitatory Amino Acid Transporter 2/genetics , Glutamic Acid/metabolism , Humans , Mice , Promoter Regions, Genetic , Regulatory Sequences, Nucleic Acid , Transcription, Genetic/physiology
8.
Neurotoxicology ; 86: 94-103, 2021 09.
Article in English | MEDLINE | ID: mdl-34310962

ABSTRACT

Dysregulation of the astrocytic glutamate transporter excitatory amino acid transporter 2 (EAAT2) is associated with several neurological disorders, including Parkinson's disease, Alzheimer's disease, and manganism, the latter induced by chronic exposure to high levels of manganese (Mn). Mechanisms of Mn-induced neurotoxicity include impairment of EAAT2 function secondary to the activation of the transcription factor Yin Yang 1 (YY1) by nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB). However, the upstream mechanisms by which Mn-induced NF-κB activates YY1 remain to be elucidated. In the present study, we used the H4 human astrocyte cell line to test if Mn activates YY1 through the canonical NF-κB signaling pathway, leading to EAAT2 repression. The results demonstrate that Mn exposure induced phosphorylation of the upstream kinase IκB kinase (IKK-ß), leading to NF-κB p65 translocation, increased YY1 promoter activity, mRNA/protein levels, and consequently repressed EAAT2. Results also demonstrated that Mn-induced oxidative stress and subsequent TNF-α production were upstream of IKK-ß activation, as antioxidants attenuated Mn-induced TNF-α production and IKK-ß activation. Moreover, TNF-α inhibition attenuated the Mn-induced activation of IKK-ß and YY1. Taken together, Mn-induced oxidative stress and TNF-α mediates activation of NF-κB signaling and YY1 upregulation, leading to repression of EAAT2. Thus, targeting reactive oxygen species (ROS), TNF-α and IKK-ß may attenuate Mn-induced YY1 activation and consequent EAAT2 repression.


Subject(s)
Astrocytes/metabolism , Excitatory Amino Acid Transporter 2/biosynthesis , I-kappa B Kinase/metabolism , Manganese/toxicity , Reactive Oxygen Species/metabolism , YY1 Transcription Factor/biosynthesis , Astrocytes/drug effects , Cells, Cultured , Excitatory Amino Acid Transporter 2/antagonists & inhibitors , Humans , Oxidative Stress/drug effects , Oxidative Stress/physiology , Up-Regulation/drug effects , Up-Regulation/physiology
9.
Molecules ; 25(24)2020 Dec 12.
Article in English | MEDLINE | ID: mdl-33322668

ABSTRACT

Manganese (Mn) is an essential trace element, serving as a cofactor for several key enzymes, such as glutamine synthetase, arginase, pyruvate decarboxylase, and mitochondrial superoxide dismutase. However, its chronic overexposure can result in a neurological disorder referred to as manganism, presenting symptoms similar to those inherent to Parkinson's disease. The pathological symptoms of Mn-induced toxicity are well-known, but the underlying mechanisms of Mn transport to the brain and cellular toxicity leading to Mn's neurotoxicity are not completely understood. Mn's levels in the brain are regulated by multiple transporters responsible for its uptake and efflux, and thus, dysregulation of these transporters may result in Mn accumulation in the brain, causing neurotoxicity. Its distribution and subcellular localization in the brain and associated subcellular toxicity mechanisms have also been extensively studied. This review highlights the presently known Mn transporters and their roles in Mn-induced neurotoxicity, as well as subsequent molecular and cellular dysregulation upon its intracellular uptakes, such as oxidative stress, neuroinflammation, disruption of neurotransmission, α-synuclein aggregation, and amyloidogenesis.


Subject(s)
Brain/metabolism , Cation Transport Proteins/metabolism , Manganese Poisoning/metabolism , Manganese/metabolism , Neurotoxins/metabolism , Animals , Calcium Channels/metabolism , Carrier Proteins/metabolism , Humans , Inflammation/metabolism , Neurotransmitter Agents/metabolism , Oxidative Stress , Transcription Factors/metabolism , Transferrin/metabolism , alpha-Synuclein/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...