Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Cardiovasc Pharmacol ; 78(5): e703-e713, 2021 11 01.
Article in English | MEDLINE | ID: mdl-34369899

ABSTRACT

ABSTRACT: Maturation of fibrillar collagen is known to play a crucial role in the pathophysiology of myocardial fibrosis. Procollagen C-proteinase enhancer 1 (PCPE1) has a key role in procollagen maturation and collagen fibril formation. The phenotype of both male and female PCPE1 knock-out mice was investigated under basal conditions to explore the potential of PCPE1 as a therapeutic target in heart failure. Global constitutive PCPE1-/- mice were generated. Serum procollagen I C-terminal propeptide, organ histology, and cutaneous wound healing were assessed in both wild type (WT) and PCPE1-/- mice. In addition, the cardiac expression of genes involved in collagen metabolism was investigated and the total and insoluble cardiac collagen contents determined. Cardiac function was evaluated by echocardiography. No differences in survival, clinical chemistry, or organ histology were observed in PCPE1-/- mice compared with WT. Serum procollagen I C-terminal propeptide was lower in PCPE1-/- mice. Cardiac mRNA expression of Bmp1, Col1a1, Col3a1, and Loxl2 was similar, whereas Tgfb and Loxl1 mRNA levels were decreased in PCPE1-/- mice compared with sex-matched WT. No modification of total or insoluble cardiac collagen content was observed between the 2 strains. Ejection fraction was slightly decreased in PCPE1-/- male mice, but not in females. Finally, wound healing was not altered in PCPE1-/- mice. PCPE1 deficiency does not trigger any major liabilities and does not affect cardiac collagen content nor its function under basal conditions. Further studies are required to evaluate its role under stressed conditions and determine its suitability as a therapeutic target for heart failure.


Subject(s)
Collagen/metabolism , Extracellular Matrix Proteins/deficiency , Myocardium/metabolism , Amino Acid Oxidoreductases/genetics , Amino Acid Oxidoreductases/metabolism , Animals , Bone Morphogenetic Protein 1/genetics , Bone Morphogenetic Protein 1/metabolism , Collagen/genetics , Collagen Type I, alpha 1 Chain/genetics , Collagen Type I, alpha 1 Chain/metabolism , Collagen Type III/genetics , Collagen Type III/metabolism , Extracellular Matrix Proteins/genetics , Female , Gene Expression Regulation , Genotype , Male , Mice, Inbred C57BL , Mice, Knockout , Peptide Fragments/blood , Phenotype , Procollagen/blood , Stroke Volume , Transforming Growth Factor beta/genetics , Transforming Growth Factor beta/metabolism , Ventricular Function, Left , Wound Healing
2.
Transl Res ; 238: 36-48, 2021 12.
Article in English | MEDLINE | ID: mdl-34332154

ABSTRACT

Little is known about the mechanisms of aging on vascular beds and its relationship with tetra and di-hydrobiopterin (BH4 and BH2) levels. This observational clinical study analyzed the impact of aging on plasma and platelet biopterins, cutaneous blood flow (CBF), and coronary flow reserve (CFR) in healthy adults. The study enrolled healthy adults in 3 age groups: 18-30, 50-59, and 60-70 years (n = 25/group). Biopterins were assessed by LC-MS/MS using newly defined pre-analytical conditions limiting BH4 oxidation and improving long-term stability. CBF was measured by Laser Speckle Contrast Imaging coupled with acetylcholine-iontophoresis and CFR by adenosine stress cardiac magnetic resonance. In healthy adults, aging (60-70 years vs 18-30 years) significantly increased platelet BH2 (+75%, P = 0.033) and BH2 + BH4 (+31%, P = 0.033), and to a lesser extent plasma BH2 (+29%, P = 0.009) without affecting BH4 and BH4/BH2. Simultaneously, CBF was decreased (-23%, P = 0.004) but not CFR, CBF being inversely correlated with platelet BH2 (r = -0.42, P = 0.001) and BH2 + BH4 (r = -0.41, P = 0.002). The proportion of adults with abnormal platelet BH2 increased with age (+28% in 60-70y). These abnormal BH2 levels were significantly associated with reduced CBF and CFR (-16%, P = 0.03 and -26%, P = 0.02). In conclusion, our study showed that age-related peripheral endothelial dysfunction was associated with an increase in circulating BH2 without decreasing BH4, the effect being more marked in platelets, the most relevant blood compartment to assess biopterin bioavailability. Peripheral but not coronary vascular function is progressively impaired with aging in healthy adults. All these findings support biopterins as therapeutic targets to improve vascular function.


Subject(s)
Aging/physiology , Biopterins/analogs & derivatives , Endothelium, Vascular/physiopathology , Adolescent , Adult , Aged , Animals , Biopterins/blood , Blood Platelets/metabolism , Blood Vessels/physiology , Endothelium, Vascular/physiology , Female , Humans , Male , Middle Aged , Rats, Inbred SHR , Rats, Inbred WKY , Rats, Zucker , Young Adult
3.
Circulation ; 137(21): 2256-2273, 2018 05 22.
Article in English | MEDLINE | ID: mdl-29217642

ABSTRACT

BACKGROUND: Myocardial metabolic impairment is a major feature in chronic heart failure. As the major coenzyme in fuel oxidation and oxidative phosphorylation and a substrate for enzymes signaling energy stress and oxidative stress response, nicotinamide adenine dinucleotide (NAD+) is emerging as a metabolic target in a number of diseases including heart failure. Little is known on the mechanisms regulating homeostasis of NAD+ in the failing heart. METHODS: To explore possible alterations of NAD+ homeostasis in the failing heart, we quantified the expression of NAD+ biosynthetic enzymes in the human failing heart and in the heart of a mouse model of dilated cardiomyopathy (DCM) triggered by Serum Response Factor transcription factor depletion in the heart (SRFHKO) or of cardiac hypertrophy triggered by transverse aorta constriction. We studied the impact of NAD+ precursor supplementation on cardiac function in both mouse models. RESULTS: We observed a 30% loss in levels of NAD+ in the murine failing heart of both DCM and transverse aorta constriction mice that was accompanied by a decrease in expression of the nicotinamide phosphoribosyltransferase enzyme that recycles the nicotinamide precursor, whereas the nicotinamide riboside kinase 2 (NMRK2) that phosphorylates the nicotinamide riboside precursor is increased, to a higher level in the DCM (40-fold) than in transverse aorta constriction (4-fold). This shift was also observed in human failing heart biopsies in comparison with nonfailing controls. We show that the Nmrk2 gene is an AMP-activated protein kinase and peroxisome proliferator-activated receptor α responsive gene that is activated by energy stress and NAD+ depletion in isolated rat cardiomyocytes. Nicotinamide riboside efficiently rescues NAD+ synthesis in response to FK866-mediated inhibition of nicotinamide phosphoribosyltransferase and stimulates glycolysis in cardiomyocytes. Accordingly, we show that nicotinamide riboside supplementation in food attenuates the development of heart failure in mice, more robustly in DCM, and partially after transverse aorta constriction, by stabilizing myocardial NAD+ levels in the failing heart. Nicotinamide riboside treatment also robustly increases the myocardial levels of 3 metabolites, nicotinic acid adenine dinucleotide, methylnicotinamide, and N1-methyl-4-pyridone-5-carboxamide, that can be used as validation biomarkers for the treatment. CONCLUSIONS: The data show that nicotinamide riboside, the most energy-efficient among NAD precursors, could be useful for treatment of heart failure, notably in the context of DCM, a disease with few therapeutic options.


Subject(s)
Cardiomyopathy, Dilated/drug therapy , Niacinamide/analogs & derivatives , AMP-Activated Protein Kinases/metabolism , Acrylamides/therapeutic use , Animals , Citric Acid/metabolism , Cytokines/genetics , Cytokines/metabolism , Dietary Supplements , Disease Models, Animal , Gene Expression Profiling , Heart Failure/prevention & control , Metabolome/drug effects , Mice , Mice, Transgenic , Myocytes, Cardiac/cytology , Myocytes, Cardiac/drug effects , Myocytes, Cardiac/metabolism , NAD/metabolism , Niacinamide/therapeutic use , Nicotinamide Phosphoribosyltransferase/genetics , Nicotinamide Phosphoribosyltransferase/metabolism , PPAR alpha/metabolism , Phosphotransferases (Alcohol Group Acceptor)/antagonists & inhibitors , Phosphotransferases (Alcohol Group Acceptor)/genetics , Phosphotransferases (Alcohol Group Acceptor)/metabolism , Piperidines/therapeutic use , Pyridinium Compounds , Rats , Serum Response Factor/deficiency , Serum Response Factor/genetics
4.
Nat Commun ; 8: 14582, 2017 02 27.
Article in English | MEDLINE | ID: mdl-28239148

ABSTRACT

Although in flies the atypical cadherin Fat is an upstream regulator of Hippo signalling, the closest mammalian homologue, Fat4, has been shown to regulate tissue polarity rather than growth. Here we show in the mouse heart that Fat4 modulates Hippo signalling to restrict growth. Fat4 mutant myocardium is thicker, with increased cardiomyocyte size and proliferation, and this is mediated by an upregulation of the transcriptional activity of Yap1, an effector of the Hippo pathway. Fat4 is not required for the canonical activation of Hippo kinases but it sequesters a partner of Yap1, Amotl1, out of the nucleus. The nuclear translocation of Amotl1 is accompanied by Yap1 to promote cardiomyocyte proliferation. We, therefore, identify Amotl1, which is not present in flies, as a mammalian intermediate for non-canonical Hippo signalling, downstream of Fat4. This work uncovers a mechanism for the restriction of heart growth at birth, a process which impedes the regenerative potential of the mammalian heart.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cadherins/metabolism , Heart/growth & development , Membrane Proteins/metabolism , Phosphoproteins/metabolism , Angiopoietin-Like Protein 1 , Animals , Animals, Newborn , Cardiomegaly/genetics , Cardiomegaly/pathology , Cell Cycle Proteins , Cell Proliferation , Desmosomes/metabolism , Desmosomes/ultrastructure , Gene Expression Regulation, Developmental , Mice , Models, Biological , Protein Binding , Rats , Signal Transduction , YAP-Signaling Proteins
5.
Methods Cell Biol ; 127: 55-73, 2015.
Article in English | MEDLINE | ID: mdl-25837386

ABSTRACT

The primary cilium is a small sensory organelle that is required for different aspects of embryonic development, including the formation of the heart. The structure and composition of cilia have been extensively studied, so that several markers of primary cilia have now been identified. However, the role of cilia in specific cell types remains poorly understood. We describe here a series of approaches to image primary cilia in the rodent heart or in primary cultures of cells dissociated from the heart. As the cilium is a marker of cell polarity, we also provide, for quantitative image analysis of cilium orientation, tools which are generally applicable to other types of tissues.


Subject(s)
Cilia/physiology , Heart/physiology , Myocardium/cytology , Myocytes, Cardiac/physiology , Animals , Cell Differentiation , Cell Polarity/physiology , Cells, Cultured , Dissection , Embryo, Mammalian/physiology , Embryonic Development , Image Processing, Computer-Assisted , Mice , Myocytes, Cardiac/cytology , Primary Cell Culture , Signal Transduction , Staining and Labeling/methods , Tissue Fixation/methods
6.
Med Sci (Paris) ; 30(11): 996-1003, 2014 Nov.
Article in French | MEDLINE | ID: mdl-25388582

ABSTRACT

After the seminal discovery in 2000 that primary cilia are functional organelles which are essential for embryonic development, several mouse models of ciliopathies have been generated. The heart is frequently affected, with a large spectrum of malformations. The cilia of the node are required early in development in the determination of the left/right laterality of the embryo, which has secondary consequences on the formation of the heart. Thus, abnormal looping of the heart is a recurrent phenotype in models of ciliopathies. However, the function of primary cilia in cardiac cells remains poorly understood. Receptors such as polycystins or hedgehog receptors are usually localized in the primary cilium, raising the possibility that these signalling pathways, which are important for the septation and the growth of the heart, are transduced in primary cilia of cardiac cells. Knowledge of the roles of primary cilia at different steps of heart development and in different cardiac cell types will be essential to better understand the origin of human cardiopathies associated with ciliopathies.


Subject(s)
Cilia/physiology , Heart/embryology , Animals , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/pathology , Coronary Vessels/embryology , Embryonic Development , Fetal Heart/growth & development , Fetal Heart/ultrastructure , Heart Defects, Congenital/genetics , Heart Defects, Congenital/pathology , Hedgehog Proteins/genetics , Hedgehog Proteins/physiology , Humans , Mice , Morphogenesis/physiology , Patched Receptors , Receptors, Cell Surface/genetics , Receptors, Cell Surface/physiology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/physiology , Signal Transduction/physiology , Smoothened Receptor , Syndrome , TRPP Cation Channels/genetics , TRPP Cation Channels/physiology , Vertebrates/embryology
7.
Development ; 140(11): 2321-33, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23674601

ABSTRACT

Efficient angiogenic sprouting is essential for embryonic, postnatal and tumor development. Serum response factor (SRF) is known to be important for embryonic vascular development. Here, we studied the effect of inducible endothelial-specific deletion of Srf in postnatal and adult mice. We find that endothelial SRF activity is vital for postnatal growth and survival, and is equally required for developmental and pathological angiogenesis, including during tumor growth. Our results demonstrate that SRF is selectively required for endothelial filopodia formation and cell contractility during sprouting angiogenesis, but seems dispensable for vascular remodeling. At the molecular level, we observe that vascular endothelial growth factor A induces nuclear accumulation of myocardin-related transcription factors (MRTFs) and regulates MRTF/SRF-dependent target genes including Myl9, which is important for endothelial cell migration in vitro. We conclude that SRF has a unique function in regulating migratory tip cell behavior during sprouting angiogenesis. We hypothesize that targeting the SRF pathway could provide an opportunity to selectively target tip cell filopodia-driven angiogenesis to restrict tumor growth.


Subject(s)
Blood Vessels/embryology , Gene Expression Regulation, Developmental , Neovascularization, Pathologic , Retinal Vessels/embryology , Serum Response Factor/physiology , Actins/metabolism , Animals , Gene Deletion , Gene Expression Profiling , Hematopoietic Stem Cells/cytology , Human Umbilical Vein Endothelial Cells , Humans , Mice , Myosins/metabolism , Neoplasm Transplantation , Pseudopodia/metabolism , RNA, Small Interfering/metabolism , Retinal Vessels/pathology , Serum Response Factor/metabolism
8.
Cardiovasc Res ; 98(3): 372-80, 2013 Jun 01.
Article in English | MEDLINE | ID: mdl-23436819

ABSTRACT

AIMS: The expression of the sodium/calcium exchanger NCX1 increases during cardiac hypertrophy and heart failure, playing an important role in Ca(2+) extrusion. This increase is presumed to result from stress signalling induced changes in the interplay between transcriptional and post-transcriptional regulations. We aimed to determine the impact of the SRF transcription factor known to regulate the NCX1 promoter and microRNA genes, on the expression of NCX1 mRNA and protein and annexin A5 (AnxA5), a Ca(2+)-binding protein interacting with NCX1 and increased during HF. METHODS AND RESULTS: NCX1 mRNA was decreased while the protein was increased in the failing heart of the cardiomyocyte-restricted SRF knock-out mice (SRF(HKO)). The induction of NCX1 mRNA by the pro-hypertrophic drug phenylephrine observed in control mice was abolished in the SRF(HKO) though the protein was strongly increased. AnxA5 protein expression profile paralleled the expression of NCX1 protein in the SRF(HKO). MiR-1, a microRNA regulated by SRF, was decreased in the SRF(HKO) and repressed by phenylephrine. In vitro and in vivo manipulation of miR-1 levels and site-directed mutagenesis showed that NCX1 and AnxA5 mRNAs are targets of miR-1. AnxA5 overexpression slowed down Ca(2+) extrusion during caffeine application in adult rat cardiomyocytes. CONCLUSION: Our study reveals the existence of a complex regulatory loop where SRF regulates the transcription of NCX1 and miR-1, which in turn functions as a rheostat limiting the translation of NCX1 and AnxA5 proteins. The decrease of miR-1 and increase of AnxA5 appear as important modulators of NCX1 expression and activity during heart failure.


Subject(s)
Annexin A5/metabolism , Cardiomyopathy, Dilated/metabolism , Heart Failure/metabolism , MicroRNAs/metabolism , Myocytes, Cardiac/metabolism , Serum Response Factor/metabolism , Sodium-Calcium Exchanger/metabolism , Animals , Annexin A5/genetics , Caffeine/pharmacology , Calcium/metabolism , Calcium Signaling , Cardiomyopathy, Dilated/genetics , Cardiomyopathy, Dilated/physiopathology , Cell Line , Disease Models, Animal , Gene Expression Regulation , Genotype , Heart Failure/genetics , Heart Failure/physiopathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mutation , Myocytes, Cardiac/drug effects , Phenotype , Phenylephrine/pharmacology , RNA, Messenger/metabolism , Rats , Rats, Wistar , Serum Response Factor/deficiency , Serum Response Factor/genetics , Sodium-Calcium Exchanger/genetics , Time Factors , Transfection
9.
BMC Cell Biol ; 12: 51, 2011 Nov 23.
Article in English | MEDLINE | ID: mdl-22107957

ABSTRACT

BACKGROUND: Intermediate filaments (IFs) are major components of the mammalian cytoskeleton and expressed in cell-type-specific patterns. Morphological changes during cell differentiation are linked to IF network remodeling. However, little is known concerning the presence and the role of IFs in embryonic stem (ES) cells and during their differentiation. RESULTS: We have examined the expression profile of synemin isoforms in mouse pluripotent ES cells and during their neural differentiation induced by retinoic acid. Using RT-PCR, Western blotting and immunostaining, we show that synemin M is present at both mRNA and protein levels in undifferentiated ES cells as early as pluripotency factor Oct-3/4 and IF keratin 8. Synemin H was produced only in neural precursors when neural differentiation started, concurrently with synemin M, nestin and glial fibrillary acidic protein. However, both synemin H and M were restricted to the progenitor line during the neural differentiation program. Our in vivo analysis also confirmed the expression of synemins H/M in multipotent neural stem cells in the subventricular zone of the adult brain, a neurogenic germinal niche of the mice. Knocking down synemin in ES cells by shRNA lentiviral particles transduction has no influence on expression of Oct4, Nanog and SOX2, but decreased keratin 8 expression. CONCLUSIONS: Our study shows a developmental stage specific regulation of synemin isoforms in ES cells and its neural derivatives. These findings represent the first evidence that synemins could potentially be useful markers for distinguishing multipotent ES cells from undifferentiated neural stem cells and more committed progenitor cells.


Subject(s)
Embryonic Stem Cells/metabolism , Gene Expression Regulation, Neoplastic , Intermediate Filament Proteins/metabolism , Animals , Cell Differentiation , Homeodomain Proteins/metabolism , Intermediate Filament Proteins/antagonists & inhibitors , Intermediate Filament Proteins/genetics , Keratin-8/metabolism , Mice , Nanog Homeobox Protein , Octamer Transcription Factor-3/metabolism , Protein Isoforms/antagonists & inhibitors , Protein Isoforms/genetics , Protein Isoforms/metabolism , RNA Interference , RNA, Small Interfering/metabolism , SOXB1 Transcription Factors/metabolism , Tretinoin/pharmacology
10.
Biol Aujourdhui ; 205(3): 139-46, 2011.
Article in French | MEDLINE | ID: mdl-21982403

ABSTRACT

Intracellular protein filaments intermediate in size between actin filaments and microtubules are composed of a variety of tissue specific proteins. The sequence conservation of the coiled-coil alpha-helical structure responsible for polymerization into individual 10 nm filaments defines a large gene family. Intermediate filaments (IFs) include the nuclear lamins, which are universal in Metazoans, and the cytoplasmic intermediate filaments, which are more varied and form cell type specific networks in animal cells. IFs all share a common tripartite structure consisting of a highly conserved central helical rod domain and variable N-head and C-tail domains. In contrast to actin and tubulin, IFs do not require nucleoside triphosphates such as ATP or GTP for polymerization but they self assemble. According to sequences, the IFs proteins are grouped into seven classes, including five cytoplasmic, one nuclear and one sub-cortical localizations. The search for functions of IFs has led to discoveries of roles in the skin, heart, muscle, liver and brain, in premature aging and of involvement in several degenerative disorders. Mutations in IFs cause or predispose to more than 80 human tissue-specific diseases. Mouse models and gene invalidation have been extremely helpful in eliciting IF role in physiopathology. Besides mechanical role in cell plasticity and stress absorbers, IF functions are related to the capacity to interact with signaling molecules and cell kinases, controlling gene regulatory networks. The reviews herein include a historical perspective about IFs, describe how mutations affect IF structure and assembly properties in desminopathies, inclusion formation in the neurodegenerative Alexander disease, and how they induce multiple disorders in laminopathies.


Subject(s)
Genetic Diseases, Inborn/genetics , Intermediate Filament Proteins/physiology , Animals , Disease Models, Animal , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Humans , Intermediate Filament Proteins/chemistry , Intermediate Filament Proteins/deficiency , Intermediate Filament Proteins/genetics , Intermediate Filaments/physiology , Intermediate Filaments/ultrastructure , Mice , Multigene Family , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/deficiency , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Neurodegenerative Diseases/genetics , Neurodegenerative Diseases/metabolism , Neurodegenerative Diseases/pathology , Protein Multimerization , Protein Structure, Secondary , Protein Structure, Tertiary
11.
J Biol Chem ; 286(40): 35007-19, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21768101

ABSTRACT

Alterations in the balance of cytoskeleton as well as energetic proteins are involved in the cardiac remodeling occurring in dilated cardiomyopathy (DCM). We used two-dimensional DIGE proteomics as a discovery approach to identify key molecular changes taking place in a temporally controlled model of DCM triggered by cardiomyocyte-specific serum response factor (SRF) knock-out in mice. We identified muscle creatine kinase (MCK) as the primary down-regulated protein followed by α-actin and α-tropomyosin down-regulation leading to a decrease of polymerized F-actin. The early response to these defects was an increase in the amount of desmin intermediate filaments and phosphorylation of the αB-crystallin chaperone. We found that αB-crystallin and desmin progressively lose their striated pattern and accumulate at the intercalated disk and the sarcolemma, respectively. We further show that desmin is a preferential target of advanced glycation end products (AGE) in mouse and human DCM. Inhibition of CK in cultured cardiomyocytes is sufficient to recapitulate both the actin depolymerization defect and the modification of desmin by AGE. Treatment with either cytochalasin D or glyoxal, a cellular AGE, indicated that both actin depolymerization and AGE contribute to desmin disorganization. Heat shock-induced phosphorylation of αB-crystallin provides a transient protection of desmin against glyoxal in a p38 MAPK-dependent manner. Our results show that the strong down-regulation of MCK activity contributes to F-actin instability and induces post-translational modification of αB-crystallin and desmin. Our results suggest that AGE may play an important role in DCM because they alter the organization of desmin filaments that normally support stress response and mitochondrial functions in cardiomyocytes.


Subject(s)
Actins/metabolism , Cardiomyopathy, Dilated/metabolism , Creatine Kinase, MM Form/deficiency , Creatine Kinase, MM Form/genetics , Desmin/metabolism , Glycation End Products, Advanced/metabolism , Alleles , Animals , Electrophoresis, Gel, Two-Dimensional , Heart Ventricles/pathology , Homozygote , Humans , Mass Spectrometry/methods , Mice , Models, Biological , Myocytes, Cardiac/cytology , Rats , Tropomyosin/metabolism , alpha-Crystallin B Chain/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...