Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Article in English | MEDLINE | ID: mdl-38048344

ABSTRACT

A method employing online solid phase extraction (SPE) coupled to UPLC-MS/MS was developed for the determination of residues of the acid herbicide quinclorac plus its transformation product, quinclorac methyl ester, in honey. The analytical method involved dissolving the honey in a mixture of methanol:water followed by direct injection into a two-dimensional UPLC system which is used to perform an automated SPE cleanup on a reusable phenyl cartridge prior to the target analytes being transferred onto an analytical UPLC column for subsequent chromatographic separation followed by MS/MS detection. The limits of quantitation for quinclorac and quinclorac methyl ester in honey were both set at 0.5 µg kg-1 and the method detection limit was estimated to be 0.012 µg kg-1 for each compound. The working analytical range (0.5-100 µg kg-1) was validated by analysing a series of spiked replicate honey samples. The method was applied to the analysis of various honeys obtained from numerous different commercial sources. Quinclorac was detected in 9 out of 30 samples at concentrations ranging from 0.6 to 31.5 µg kg-1. Quinclorac methyl ester, which is estimated to be significantly more toxic than the parent herbicide itself, was not detected in any honey sample.


Subject(s)
Herbicides , Honey , Quinolines , Tandem Mass Spectrometry/methods , Honey/analysis , Chromatography, Liquid/methods , Liquid Chromatography-Mass Spectrometry , Herbicides/analysis , Solid Phase Extraction/methods , Chromatography, High Pressure Liquid/methods
2.
Plant Dis ; 106(11): 2876-2883, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35442047

ABSTRACT

A probe-based quantitative PCR (qPCR) protocol was developed for detection and evaluation of the wheat bacterial leaf streak pathogen Xanthomonas translucens pathovar (pv.) undulosa. The protocol can also detect X. translucens pv. translucens and X. translucens pv. secalis but can't differentiate the three pathovars. When tested on nontarget DNA (i.e., from plant; bacteria other than X. translucens pv. undulosa, X. translucens pv. translucens, and X. translucens pv. secalis; and culture of microorganisms from wheat grains), the qPCR showed a high specificity. On purified X. translucens pv. undulosa DNA, the qPCR was more sensitive than a loop-mediated isothermal amplification assay. When DNA samples from a set of serial dilutions of X. translucens pv. undulosa cells were tested, the qPCR method could repeatedly generate quantification cycle (Cq) values from the dilutions containing ≥1,000 cells. Since 2 µl of the total 50 µl of DNA was used in one reaction, one qPCR reaction could detect the presence of the bacteria in samples containing as few as 40 bacterial cells. The qPCR could detect the bacteria from both infected grain and leaf tissues. For seed testing, a protocol for template preparation was standardized, which allowed one qPCR reaction to test DNA from the surface of one wheat grain. Thus, the qPCR system could detect X. translucens pv. undulosa, X. translucens pv. translucens, and/or X. translucens pv. secalis in samples where the bacteria had an average concentration of ≥40 cells per grain.


Subject(s)
Plant Diseases , Xanthomonas , Plant Diseases/microbiology , Xanthomonas/genetics , Triticum/microbiology , Edible Grain/genetics , Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...