Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Chem Res Toxicol ; 16(12): 1547-54, 2003 Dec.
Article in English | MEDLINE | ID: mdl-14680368

ABSTRACT

Nitric oxide synthases (NOSs) are flavohemeproteins that catalyze the oxidation of l-arginine to l-citrulline with formation of the widespread signal molecule NO. Beside their fundamental role in NO biosynthesis, these enzymes are also involved in the formation of reactive oxygen species and in the interactions with some xenobiotic compounds. Nilutamide is a nonsteroidal antiandrogen that behaves as a competitive antagonist of the androgen receptors and is proposed in the treatment of metastatic prostatic carcinoma. However, therapeutic effects of nilutamide are overshadowed by the occurrence of several adverse reactions mediated by toxic mechanism(s), which remain(s) poorly investigated. Here, we studied the interaction of NOSs with nilutamide. Our results show that the purified recombinant neuronal NOS reduced the nitroaromatic nilutamide to the corresponding hydroxylamine. The reduction of nilutamide catalyzed by neuronal NOS proceeded with intermediate formation of a nitro anion free radical easily observed by EPR, was insensitive to the addition of the usual heme ligands and l-arginine analogues, but strongly inhibited by O(2) and a flavin/NADPH binding inhibitor. Involvement of the reductase domain of nNOS in the reduction of nilutamide was confirmed by (i) the ability of the isolated reductase domain of nNOS to catalyze the reaction and (ii) the stimulating effect of Ca(2+)/calmodulin on the accumulation of hydroxylamine and nitro anion radical. In a similar manner, the recombinant inducible and endothelial NOS isoforms also displayed nitroreductase activity, albeit with lower yields. The selective reduction of nilutamide to its hydroxylamino derivative by the NOSs could explain some of the toxic effects of this drug.


Subject(s)
Androgen Antagonists/metabolism , Imidazoles/metabolism , Imidazolidines , Nitric Oxide Synthase/metabolism , Amines/chemistry , Amines/metabolism , Anaerobiosis , Androgen Antagonists/adverse effects , Androgen Antagonists/chemistry , Animals , Cattle , Electron Spin Resonance Spectroscopy , Free Radicals/chemistry , Free Radicals/metabolism , Imidazoles/adverse effects , Imidazoles/chemistry , Mice , NADP/metabolism , Nitric Oxide Synthase/genetics , Nitric Oxide Synthase Type I , Nitric Oxide Synthase Type II , Nitric Oxide Synthase Type III , Oxidation-Reduction , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Time Factors
2.
Biochemistry ; 40(40): 12112-22, 2001 Oct 09.
Article in English | MEDLINE | ID: mdl-11580286

ABSTRACT

Experiments using recombinant yeast-expressed human liver cytochromes P450 confirmed previous literature data indicating that ticlopidine is an inhibitor of CYP 2C19. The present studies demonstrated that ticlopidine is selective for CYP 2C19 within the CYP 2C subfamily. UV-visible studies on the interaction of a series of ticlopidine derivatives with CYP 2C19 showed that ticlopidine binds to the CYP 2C19 active site with a K(s) value of 2.8 +/- 1 microM. Derivatives that do not involve either the o-chlorophenyl substituent, the free tertiary amine function, or the thiophene ring of ticlopidine did not lead to such spectral interactions and failed to inhibit CYP 2C19. Ticlopidine is oxidized by CYP 2C19 with formation of two major metabolites, the keto tautomer of 2-hydroxyticlopidine (1) and the dimers of ticlopidine S-oxide (TSOD) (V(max) = 13 +/- 2 and 0.4 +/- 0.1 min(-1)). During this oxidation, CYP 2C19 was inactivated; the rate of its inactivation was time and ticlopidine concentration dependent. This process meets the chemical and kinetic criteria generally accepted for mechanism-based enzyme inactivation. It occurs in parralel with CYP 2C19-catalyzed oxidation of ticlopidine, is inhibited by an alternative well-known substrate of CYP 2C19, omeprazole, and correlates with the covalent binding of ticlopidine metabolite(s) to proteins. Moreover, CYP 2C19 inactivation is not inhibited by the presence of 5 mM glutathione, suggesting that it is due to an alkylation occurring inside the CYP 2C19 active site. The effects of ticlopidine on CYP 2C19 are very analogous with those previously described for the inactivation of CYP 2C9 by tienilic acid. This suggests that a similar electrophilic intermediate, possibly a thiophene S-oxide, is involved in the inactivation of CYP 2C19 and CYP 2C9 by ticlopidine and tienilic acid, respectively. The kinetic parameters calculated for ticlopidine-dependent inactivation of CYP 2C19, i.e., t(1/2max) = 3.4 min, k(inact) = 3.2 10(-3) s(-1), K(I) = 87 microM, k(inact)/K(I) = 37 L.mol(-1).s(-1), and r (partition ratio) = 26 (in relation with formation of 1 + TSOD), classify ticlopidine as an efficient mechanism-based inhibitor although somewhat less efficient than tienilic acid for CYP 2C9. Importantly, ticlopidine is the first selective mechanism-based inhibitor of human liver CYP 2C19 and should be a new interesting tool for studying the topology of the active site of CYP 2C19.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/pharmacology , Mixed Function Oxygenases/antagonists & inhibitors , Ticlopidine/pharmacology , Alkylation , Binding Sites , Chromatography, High Pressure Liquid , Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System/metabolism , Enzyme Inhibitors/chemistry , Glutathione/pharmacology , Humans , Kinetics , Liver/enzymology , Mixed Function Oxygenases/metabolism , Molecular Structure , Omeprazole/pharmacology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Spectrum Analysis , Ticlopidine/antagonists & inhibitors , Ticlopidine/chemistry
3.
J Med Chem ; 44(22): 3622-31, 2001 Oct 25.
Article in English | MEDLINE | ID: mdl-11606127

ABSTRACT

Twenty-three new derivatives of sulfaphenazole (SPA) were synthesized to further explore the topology of the active sites of human liver cytochromes P450 of the 2C subfamily and to find new selective inhibitors of these cytochromes. These compounds are derived from SPA by replacement of the NH(2) and H (of the SO(2)NH function) substituents of SPA with various R(1) and R(2) groups, respectively. Their inhibitory effects were studied on recombinant CYP 2C8, 2C9, 2C18, and 2C19 expressed in yeast. High affinities for CYP 2C9 (IC(50) < 1 microM) were only observed for SPA derivatives having the SO(2)NH function and a relatively small R(1) substituent (R(1) = NH(2), CH(3)). Any increase in the size of R(1) led to a moderate decrease of the affinity, and the N-alkylation of the SO(2)NH function of SPA to a greater decrease of this affinity. The same structural changes led to opposite effects on molecular recognition by CYP 2C8 and 2C18, which generally exhibited similar behaviors. Thus, contrary to CYP 2C9, CYP 2C8 and 2C18 generally prefer neutral compounds with relatively large R(1) and R(2) substituents. CYP 2C19 showed an even lower affinity for anionic compounds than CYP 2C8 and 2C18. However, as CYP 2C8 and 2C18, CYP 2C19 showed a much better affinity for neutral compounds derived from N-alkylation of SPA and for anionic compounds bearing a larger R(1) substituent. One of the new compounds (R(1) = methyl, R(2) = propyl) inhibited all human CYP 2Cs with IC(50) values between 10 and 20 microM, while another one (R(1) = allyl, R(2) = methyl) inhibited all CYP 2Cs except CYP 2C9, and a third one (R(1) = R(2) = methyl) inhibited all CYP 2Cs except CYP 2C8. Only 2 compounds of the 25 tested derivatives were highly selective toward one human CYP 2C; these are SPA and compound 1 (R(1) = CH(3), R(2) = H), which acted as selective CYP 2C9 inhibitors. However, some SPA derivatives selectively inhibited CYP 2C8 and 2C18. Since CYP 2C18 is hardly detectable in human liver, these derivatives could be interesting molecules to selectively inhibit CYP 2C8 in human liver microsomes. Thus, compound 11 (R(1) = NH(2), R(2) = (CH(2))(2)CH(CH(3))(2)) appears to be particularly interesting for that purpose as its IC(50) value for CYP 2C8 is low (3 microM) and 20-fold smaller than those found for CYP 2C9 and 2C19.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme Inhibitors , Enzyme Inhibitors/chemical synthesis , Liver/enzymology , Steroid 16-alpha-Hydroxylase , Sulfaphenazole/analogs & derivatives , Sulfaphenazole/chemical synthesis , Sulfonamides/chemical synthesis , Binding Sites , Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Microsomes/enzymology , Mixed Function Oxygenases/antagonists & inhibitors , Recombinant Proteins/antagonists & inhibitors , Steroid Hydroxylases/antagonists & inhibitors , Structure-Activity Relationship , Sulfaphenazole/chemistry , Sulfaphenazole/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Yeasts/enzymology
4.
Arch Biochem Biophys ; 394(2): 189-200, 2001 Oct 15.
Article in English | MEDLINE | ID: mdl-11594733

ABSTRACT

A series of new derivatives of sulfaphenazole (SPA), in which the NH(2) and phenyl substituents of SPA are replaced by various groups or in which the sulfonamide function of SPA is N-alkylated, were synthesized in order to further explore CYP 2C9 active site and to determine the structural factors explaining the selectivity of SPA for CYP 2C9 within the human P450 2C subfamily. Compounds in which the NH(2) group of SPA was replaced with R(1) = CH(3), Br, CH = CH(2), CH(2)CH = CH(2), and CH(2)CH(2)OH exhibited a high affinity for CYP 2C9, as shown by the dissociation constant of their CYP 2C9 complexes, K(s), which was determined by difference visible spectroscopy (K(s) between 0.1 and 0.4 microM) and their constant of CYP 2C9 inhibition (K(i) between 0.3 and 0.6 microM). This indicates that the CYP 2C9-iron(III)-NH(2)R bond previously described to exist in the CYP 2C9-SPA complex does not play a key role in the high affinity of SPA for CYP 2C9. Compounds in which the phenyl group of SPA was replaced with various aryl or alkyl R(2) substituents only exhibited a high affinity for CYP 2C9 if R(2) is a freely rotating and sufficiently electron-rich aryl substituent. Finally, compounds resulting from a N-alkylation of the SPA sulfonamide function (R(3) = CH(3), C(2)H(5), or C(3)H(7)) did not retain the selective inhibitory properties of SPA toward CYP 2C9. However, they are reasonably good inhibitors of CYP 2C8 and CYP 2C18 (IC(50) approximately 20 microM). These data allow one to better understand the structural factors that are important for selective binding in the CYP 2C9 active site. They also provide us with clues towards new selective inhibitors of CYP 2C8 and CYP 2C18.


Subject(s)
Cytochrome P-450 Enzyme System/metabolism , Sulfaphenazole/chemistry , Sulfaphenazole/metabolism , Binding Sites/physiology , Cytochrome P-450 Enzyme Inhibitors , Cytochrome P-450 Enzyme System/genetics , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Humans , Isoenzymes/antagonists & inhibitors , Isoenzymes/metabolism , Microsomes/enzymology , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/metabolism , Spectrophotometry , Spectrophotometry, Ultraviolet , Structure-Activity Relationship , Sulfaphenazole/analogs & derivatives , Sulfaphenazole/pharmacology , Transfection , Yeasts/chemistry , Yeasts/metabolism
6.
Biochemistry ; 40(33): 9909-17, 2001 Aug 21.
Article in English | MEDLINE | ID: mdl-11502185

ABSTRACT

Interaction between microperoxidase-8 (MP8), a water-soluble hemeprotein model, and a wide range of N-aryl and N-alkyl N'-hydroxyguanidines and related compounds has been investigated using UV-visible, EPR, and resonance Raman spectroscopies. All the N-hydroxyguanidines studied bind to the ferric form of MP8 with formation of stable low-spin iron(III) complexes characterized by absorption maxima at 405, 535, and 560 nm. The complex obtained with N-(4-methoxyphenyl) N'-hydroxyguanidine exhibits EPR g-values at 2.55, 2.26, and 1.86. The resonance Raman (RR) spectrum of this complex is also in agreement with an hexacoordinated low-spin iron(III) structure. The dissociation constants (K(s)) of the MP8 complexes with mono- and disubstituted N-hydroxyguanidines vary between 15 and 160 microM at pH 7.4. Amidoximes also form low-spin iron(III) complexes of MP8, although with much larger dissociation constants. Under the same conditions, ketoximes, aldoximes, methoxyguanidines, and guanidines completely fail to form such complexes with MP8. The K(s) values of the MP8-N-hydroxyguanidine complexes decrease as the pH of the solution is increased, and the affinity of the N-hydroxyguanidines toward MP8 increases with the pK(a) of these ligands. Altogether these results show that compounds involving a -C(NHR)=NOH moiety act as good ligands of MP8-Fe(III) with an affinity that depends on the electron-richness of this moiety. The analysis of the EPR spectrum of the MP8-N-hydroxyguanidine complexes according to Taylor's equations shows a strong axial distortion of the iron, typical of those observed for hexacoordinated heme-Fe(III) complexes with at least one pi donor axial ligand (HO(-), RO(-), or RS(-)). These data strongly suggest that N-hydroxyguanidines bind to MP8 iron via their oxygen atom after deprotonation or weakening of their O-H bond. It thus seems that N-hydroxyguanidines could constitute a new class of strong ligands for hemeproteins and iron(III)-porphyrins.


Subject(s)
Electron Spin Resonance Spectroscopy/methods , Guanidines/chemistry , Heme/chemistry , Peroxidases/chemistry , Peroxidases/metabolism , Spectrophotometry/methods , Spectrum Analysis, Raman/methods , Animals , Horses , Hydroxylamines , Iron , Kinetics , Ligands , Models, Chemical , Myocardium/metabolism , Protein Binding , Ultraviolet Rays
8.
J Inorg Biochem ; 80(3-4): 239-46, 2000 Jul 01.
Article in English | MEDLINE | ID: mdl-11001095

ABSTRACT

A [CoIII(N2S2)]NEt4 complex, with two carboxamido nitrogens and two alkylthiolato sulfurs, was prepared from N,N'-(2-thioacetylisobutyryl)-2-aminobenzylamine, and characterized. It crystallizes with a distorted square planar structure including two short Co-N bonds (approximately 1.882 A) and two short Co-S bonds (approximately 2.134 A). The ligand defines an 11-atom chelate, which may be Co ligands in the mean plane of Co-containing nitrile hydratase. The CoIII oxidation state, reversibly reduced at -1.13 V (vs. SCE) and irreversibly oxidized at +1.29 V (vs. SCE) in DMF, is stable over a 2 V potential range. From the temperature dependence of its magnetic susceptibility, cobalt(III) was found to be in an S = 1 triplet ground state, in agreement with the broad resonances observed in its 1H-NMR spectrum. Preliminary spectral studies showed that this complex does not interact with imidazole, H2O or HO-, but binds two CN anions or two NO molecules. The IR spectrum of the dinitrosyl complex exhibits two NO stretches at 1765 and 1820 cm(-1), in the range previously observed for dinitrosylated complexes derived from cobalt(I). This result suggests that, similarly to Fe NHases, Co NHases might readily bind NO.


Subject(s)
Cobalt/chemistry , Cyanides/chemistry , Hydro-Lyases/chemistry , Cobalt/metabolism , Cyanides/metabolism , Hydro-Lyases/chemical synthesis , Hydro-Lyases/metabolism , Ligands , Molecular Structure , Nitric Oxide/chemistry , Nuclear Magnetic Resonance, Biomolecular , Protein Conformation , Spectrophotometry , Sulfur/chemistry , Sulfur/metabolism , Temperature
9.
Biochemistry ; 38(43): 14264-70, 1999 Oct 26.
Article in English | MEDLINE | ID: mdl-10572000

ABSTRACT

A comparison of the oxidations of diclofenac with microsomes of yeasts expressing various human liver cytochromes P450 showed that P450 2C9 regioselectively led to 4'-hydroxy diclofenac (4'-OHD) whereas P450 3A4 only led to 5-hydroxy diclofenac (5-OHD). P450 2C19, 2C18, and 2C8 led to the simultaneous formation of 4'-OHD and 5-OHD (respective molar ratios of 1.3, 0.37, and 0.17), and P450 1A1, 1A2, 2D6, and 2E1 failed to give any detectable hydroxylated metabolite under identical conditions. P450 2C9 was found to be much more efficient for diclofenac hydroxylation than all the other P450s tested (k(cat)/K(M) of 1.6 min(-1) microM(-1) instead of 0.025 for the second more active P450), mainly because of markedly lower K(M) values (15 +/- 8 instead of values between 170 and 630 microM). Oxidation of diclofenac with chemical model systems of cytochrome P450 based on iron porphyrin catalysts exclusively led to the quinone imine derived from two-electron oxidation of 5-OHD, in an almost quantitative yield. Two derivatives of diclofenac lacking its COO(-) function were then synthesized; their oxidation by recombinant human P450 2Cs always led to a major product coming from their 5-hydroxylation. Substrate 2, which derives from reduction of the COO(-) function of diclofenac to the CH(2)OH function, was studied in more detail. All the P450s tested (1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, and 3A4) almost exclusively led to its 5-hydroxylation. P450s of the 2C subfamily were found to be the most efficient catalysts for this reaction, with k(cat)/K(M) values between 0.2 and 1.6 min(-1) microM(-1). Oxidation of 2 with an iron porphyrin-based chemical model of cytochrome P450 also led to a product derived from the oxidation of 2 at position 5. These results show that oxidation of diclofenac and its derivative 2, either with chemical model systems of cytochrome P450 or with recombinant human P450s, generally occurs at position 5. This position, para to the NH group on the more electron-rich aromatic ring of diclofenac derivatives, is thus, as expected, the privileged site of reaction of electrophilic, oxidant species. The most spectacular exception to this chemoselective 5-oxidation of diclofenac derivatives was found for oxidation of diclofenac itself with P450 2C9 (and P450 2C19 and 2C18 to a lesser extent), which only led to 4'-OHD. A likely explanation for this result is a strict positioning of diclofenac in the P450 2C9 active site, via its COO(-) function, to completely orientate its hydroxylation toward position 4', which is not chemically preferred. P450 2C19, 2C18, and 2C8 would not lead to such a strict positioning as they give mixtures of 4'-OHD and 5-OHD. The above results show that diclofenac derivatives are interesting tools to compare the active site topologies of human P450 2Cs.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cyclooxygenase Inhibitors/metabolism , Cytochrome P-450 Enzyme System/metabolism , Diclofenac/analogs & derivatives , Diclofenac/metabolism , Steroid 16-alpha-Hydroxylase , Binding Sites , Cytochrome P-450 CYP2C19 , Cytochrome P-450 Enzyme System/biosynthesis , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/genetics , Humans , Hydroxylation , Isoenzymes/biosynthesis , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Liver/enzymology , Mixed Function Oxygenases/chemistry , Mixed Function Oxygenases/metabolism , Molecular Mimicry , Oxidation-Reduction , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Stereoisomerism , Steroid Hydroxylases/chemistry , Steroid Hydroxylases/metabolism , Substrate Specificity , tert-Butylhydroperoxide/pharmacology
10.
Biochemistry ; 38(24): 7828-36, 1999 Jun 15.
Article in English | MEDLINE | ID: mdl-10387023

ABSTRACT

A series of 2-aroylthiophenes derived from tienilic acid by replacement of its OCH2COOH substituent with groups bearing various functions have been synthesized and studied as possible substrates of recombinant human liver cytochrome P450s 2C9 and 2C18 expressed in yeast. Whereas only compounds bearing a negative charge acted as substrates of CYP 2C9 and were hydroxylated at position 5 of their thiophene ring at a significant rate, many neutral 2-aroylthiophenes were 5-hydroxylated by CYP 2C18 with kcat values of >2 min-1. Among the various compounds that were studied, those bearing an alcohol function were the best CYP 2C18 substrates. One of them, compound 3, which bears a terminal O(CH2)3OH function, appeared to be a particularly good substrate of CYP 2C18. It was regioselectively hydroxylated by CYP 2C18 at position 5 of its thiophene ring with a KM value of 9 +/- 1 microM and a kcat value of 125 +/- 25 min-1, which are the highest described so far for a CYP 2C. A comparison of the oxidations of 3, by yeast-expressed CYP 1A1, 1A2, 2C8, 2C9, 2C18, 2C19, 2D6, 2E1, 3A4, and 3A5, showed that only CYP 2C8, 2C18, and 2C19 were able to catalyze the 5-hydroxylation of 3. However, the catalytic efficiency of CYP 2C18 for that reaction was considerably higher (kcat/KM value being 3-4 orders of magnitude larger than those found for CYP 2C8 and 2C19). Several human P450s exhibited small activities for the oxidative O-dealkylation of 3. The four recombinant CYP 2Cs were the best catalysts for that reaction (kcat between 1 and 5 min-1) when compared to all the P450s that were tested, even though it is a minor reaction in the case of CYP 2C18. All these results show that compound 3 is a new, selective, and highly efficient substrate for CYP 2C18 that should be useful for the study of this P450 in various organs and tissues. They also suggest some key differences between the active sites of CYP 2C9 and CYP 2C18 for substrate recognition.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Liver/enzymology , Steroid 16-alpha-Hydroxylase , Steroid Hydroxylases/metabolism , Ticrynafen/chemical synthesis , Ticrynafen/metabolism , Cytochrome P-450 CYP1A1/metabolism , Cytochrome P-450 CYP1A2/metabolism , Cytochrome P-450 CYP2C19 , Cytochrome P-450 CYP2D6/metabolism , Cytochrome P-450 CYP2E1/metabolism , Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System/genetics , Humans , Hydroxylation , Liver/metabolism , Mixed Function Oxygenases/metabolism , Nuclear Magnetic Resonance, Biomolecular , Oxidation-Reduction , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Spectrophotometry, Ultraviolet , Steroid Hydroxylases/chemistry , Steroid Hydroxylases/genetics , Structure-Activity Relationship , Substrate Specificity , Thiophenes/chemistry , Thiophenes/metabolism
11.
Eur J Biochem ; 261(2): 533-9, 1999 Apr.
Article in English | MEDLINE | ID: mdl-10215866

ABSTRACT

The Burkholderia cepacia AC1100 strain, known to degrade the herbicide, 2,4,5-Trichlorophenoxyacetic acid (2,4,5-T), is able to metabolize 4-hydroxyarylaldehyde, not only into the corresponding acid, but also into a new hydroquinone, 2,5-dihydroxyarylaldehyde. When incubated with resting AC1100 cells or cell-free extracts, syringaldehyde and 3,5-dimethoxy-4-hydroxybenzaldehyde were converted into such metabolites, identified by comparison of their mass and 1H-NMR spectra with those of authentic chemically synthesized samples. With 5-bromovanillin, only one metabolite was formed, the structure of which was identified as 2, 5-dihydroxy-4-methoxy-6-bromobenzaldehyde through 1H-NMR two-dimensional NOESY experiments. All these products result formally from a para hydroxylation of the phenol followed by the cis migration of the aldehyde. This reaction is the only one to be associated with the 2,4,5-T degradation pathway, as the acid formation was retained when the AC1100 strain had lost its degradation ability. Through competitive experiments with halophenols and methimazole, an alternative substrate of flavin monooxygenase, the chlorophenol-4-monooxygenase was recognized to be the enzyme involved in the hydroxylation of 4-hydroxyarylaldehyde. The purified enzyme, previously reported to catalyze the para hydroxylation or dehalogenating hydroxylation of chlorophenols, also promotes this hydroxylation reaction in the presence of NADH and FAD. The kcat value determined for the best substrate, syringaldehyde, 0. 08 s-1, was about 20% of that obtained for 2,6-dichlorophenol hydroxylation (0.38 s-1).


Subject(s)
Burkholderia cepacia/enzymology , Mixed Function Oxygenases/metabolism , Aldehydes/metabolism , Benzaldehydes/metabolism , Binding, Competitive , Enzyme Inhibitors/pharmacology , Flavin-Adenine Dinucleotide/metabolism , Hydroxylation , Kinetics , Magnetic Resonance Spectroscopy , Molecular Structure , NAD/metabolism , Substrate Specificity
12.
Biochemistry ; 38(15): 4663-8, 1999 Apr 13.
Article in English | MEDLINE | ID: mdl-10200153

ABSTRACT

Inducible nitric oxide synthase (NOS II) efficiently catalyzes the oxidation of N-(4-chlorophenyl)N'-hydroxyguanidine 1 by NADPH and O2, with concomitant formation of the corresponding urea and NO. The characteristics of this reaction are very similar to those of the NOS-dependent oxidation of endogenous Nomega-hydroxy-L-arginine (NOHA), i.e., (i) the formation of products resulting from an oxidation of the substrate C=N(OH) bond, the corresponding urea and NO, in a 1:1 molar ratio, (ii) the absolute requirement of the tetrahydrobiopterin (BH4) cofactor for NO formation, and (iii) the strong inhibitory effects of L-arginine (L-arg) and classical inhibitors of NOSs. N-Hydroxyguanidine 1 is not as good a substrate for NOS II as is NOHA (Km = 500 microM versus 15 microM for NOHA). However, it leads to relatively high rates of NO formation which are only 4-fold lower than those obtained with NOHA (Vm = 390 +/- 50 nmol NO min-1 mg protein-1, corresponding roughly to 100 turnovers min-1). Preliminary results indicate that some other N-aryl N'-hydroxyguanidines exhibit a similar behavior. These results show for the first time that simple exogenous compounds may act as NO donors after oxidative activation by NOSs. They also suggest a possible implication of NOSs in the oxidative metabolism of certain classes of xenobiotics.


Subject(s)
Guanidines/chemistry , Nitric Oxide Synthase/chemistry , Nitric Oxide/chemical synthesis , Biopterins/analogs & derivatives , Biopterins/chemistry , Catalysis , Hydroxylamines , Kinetics , NADP/chemistry , Nitric Oxide Synthase Type II , Oxidation-Reduction , Oxygen/chemistry , Urea/chemistry
13.
Biochemistry ; 35(50): 16205-12, 1996 Dec 17.
Article in English | MEDLINE | ID: mdl-8973193

ABSTRACT

The effects of sulfaphenazole, 1, on typical activities catalyzed by human cytochromes P450 of the 1A, 3A, and 2C subfamilies expressed in yeast were studied. 1 acts as a strong, competitive inhibitor of CYP 2C9 (K(i) = 0.3 +/- 0.1 microM); it is much less potent toward CYP 2C8 and 2C18 (K(i) = 63 and 29 microM, respectively) and fails to inhibit CYP 1A1, 1A2, 3A4, and 2C19. From difference visible spectroscopy experiments using microsomes of yeast expressing various human P450s, 1 selectively interacts only with CYP 2C9 with the appearance of a peak at 429 nm as expected for the formation of a P450 Fe(III)-nitrogenous ligand complex (Ks = 0.4 +/- 0.1 microM). Comparative studies of the spectral interaction and inhibitory effects of twelve compounds related to 1 with CYP 2C9 showed that the aniline function of 1 is responsible for the formation of the iron-nitrogen bond of the 429 nm-absorbing complex and is necessary for the inhibitory effects of 1. The study of two new compounds synthesized during this work, in which the N-phenyl group of 1 was replaced with either an ethyl group or a 3,4-dichlorophenyl group, showed that the presence of an hydrophobic substituent at position 1 of the pyrazole function of 1 is required for a strong interaction with CYP 2C9. A model for the binding of 1 in the CYP 2C9 active site is proposed; that takes into account three major interactions that should be at the origin of the high-affinity and specific inhibitory effects of 1 toward CYP 2C9: (i) the binding of its nitrogen atom to CYP 2C9 iron, (ii) an ionic interaction of its SO2N- anionic site with a cationic residue of CYP 2C9, and (iii) an interaction of its N-phenyl group with an hydrophobic part of the protein active site.


Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme System/chemistry , Cytochrome P-450 Enzyme System/metabolism , Liver/enzymology , Steroid 16-alpha-Hydroxylase , Steroid Hydroxylases/chemistry , Steroid Hydroxylases/metabolism , Sulfaphenazole/analogs & derivatives , Sulfaphenazole/pharmacology , Binding Sites , Cloning, Molecular , Cytochrome P-450 Enzyme Inhibitors , Humans , Kinetics , Microsomes/enzymology , Models, Molecular , Molecular Structure , Protein Conformation , Recombinant Proteins/antagonists & inhibitors , Recombinant Proteins/chemistry , Recombinant Proteins/metabolism , Saccharomyces cerevisiae , Spectrophotometry , Steroid Hydroxylases/antagonists & inhibitors , Structure-Activity Relationship , Substrate Specificity , Sulfaphenazole/chemical synthesis , Sulfaphenazole/metabolism
14.
Biochemistry ; 34(33): 10365-75, 1995 Aug 22.
Article in English | MEDLINE | ID: mdl-7654690

ABSTRACT

Biochemical experiments, using the well-defined human liver CYP2C9 expressed in yeast, and molecular modeling techniques were used to derive a predictive model for substrates of CYP2C9. The ability of 10 2-aroylthiophenes related to tienilic acid to act as substrates for CYP2C9 was studied. Four of them were original compounds that were synthesized and completely characterized by several spectroscopic techniques. In these 10 compounds various chemical functions, such as ester, amide, alcohol, phenol, ether or tetrazole functions, replaced the OCH2COOH function of tienilic acid. Among them, only the derivatives containing an acidic function (carboxylic acids, phenol, and tetrazole whose pKaS are 4.8, 6.3, and 3.8, respectively) underwent a 5-hydroxylation of their thiophene ring like tienilic acid. Despite their close structural analogy with tienilic acid, all of the other compounds not only did not undergo any 5-hydroxylation of their thiophene ring but also failed to act as inhibitors of CYP2C9. These results strongly suggested that the presence, at pH 7.4, of a negative charge on the substrate is a very important feature in its recognition by CYP2C9. In fact, the four new substrates of CYP2C9 described in this study, a carboxylic acid, phenol, and tetrazole derivative, each of which is related to tienilic acid, and the antiinflammatory drug, suprofen (with Km between 12 and 130 microM and kcat between 0.2 and 1.3 min-1), as well as almost all CYP2C9 substrates reported in the literature, exhibit a pKa below 7 (except phenytoin whose pKa is 8.1). They mainly exist as anions at physiological pH. By using molecular modeling techniques, 12 CYP2C9 substrates were superimposed with respect to their hydroxylation site and fitted onto templates, which were rigid molecules such as (S)-warfarin and phenytoin. It was thus possible to arrange them in order that all their anionic sites were at a distance around 4 A from a common point (a putative cationic site of the protein) in space. These results provide a model of the substrate binding site of CYP2C9, in which substrates interact through their anionic site A- with a cationic residue of the CYP2C9 protein C+. In that model, the distance between the hydroxylation site (Hy) and the anionic site (A-) is 7.8 +/- 1.6 A, and the

Subject(s)
Aryl Hydrocarbon Hydroxylases , Cytochrome P-450 Enzyme System/chemistry , Liver/enzymology , Models, Molecular , Steroid 16-alpha-Hydroxylase , Steroid Hydroxylases/chemistry , Ticrynafen/metabolism , Binding Sites , Chemical Phenomena , Chemistry, Physical , Crystallography, X-Ray , Cytochrome P-450 CYP2C9 , Cytochrome P-450 Enzyme System/metabolism , Electrochemistry , Humans , Hydrogen-Ion Concentration , Hydroxylation , Oxidation-Reduction , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Steroid Hydroxylases/metabolism , Substrate Specificity , Suprofen/metabolism , Ticrynafen/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...