Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Plant Dis ; 107(10): 2997-3006, 2023 Oct.
Article in English | MEDLINE | ID: mdl-36856646

ABSTRACT

Fusarium oxysporum f. sp. radicis-vanillae (Forv), the causal agent of root and stem rot disease, is the main pathogen affecting vanilla production. Sources of resistance have been reported in Vanilla planifolia G. Jackson ex Andrews, the main cultivated vanilla species. In this study, we developed the first high-density genetic map in this species with 1,804 genotyping-by-sequencing (GBS)-generated single nucleotide polymorphism (SNP) markers using 125 selfed progenies of the CR0040 traditional vanilla cultivar. Sixteen linkage groups (LG) were successfully constructed, with a mean of 113 SNPs and an average length of 207 cM per LG. The map had a high density with an average of 5.45 SNP every 10 cM and an average distance of 1.85 cM between adjacent markers. The first three LG were aligned against the first assembled chromosome of CR0040, and the other 13 LG were correctly associated with the other 13 assembled chromosomes. The population was challenged with the highly pathogenic Forv strain Fo072 using the root-dip inoculation method. Five traits were mapped, and 20 QTLs were associated with resistance to Fo072. Among the genes retrieved in the CR0040 physical regions associated with QTLs, genes potentially involved in biotic resistance mechanisms, coding for kinases, E3 ubiquitin ligases, pentatricopeptide repeat-containing proteins, and one leucine-rich repeat receptor underlying the qFo72_08.1 QTL have been highlighted. This study should provide useful resources for marker-assisted selection in V. planifolia.


Subject(s)
Quantitative Trait Loci , Vanilla , Quantitative Trait Loci/genetics , Chromosome Mapping/methods , Vanilla/genetics , Genetic Linkage
2.
Front Plant Sci ; 6: 1125, 2015.
Article in English | MEDLINE | ID: mdl-26734032

ABSTRACT

Root and stem rot (RSR) disease caused by Fusarium oxysporum f. sp. radicis-vanillae (Forv) is the most damaging disease of vanilla (Vanilla planifolia and V. × tahitensis, Orchidaceae). Breeding programs aimed at developing resistant vanilla varieties are hampered by the scarcity of sources of resistance to RSR and insufficient knowledge about the histopathology of Forv. In this work we have (i) identified new genetic resources resistant to RSR including V. planifolia inbreds and vanilla relatives, (ii) thoroughly described the colonization pattern of Forv into selected vanilla accessions, confirming its necrotic non-vascular behavior in roots, and (iii) evidenced the key role played by hypodermis, and particularly lignin deposition onto hypodermal cell walls, for resistance to Forv in two highly resistant vanilla accessions. Two hundred and fifty-four vanilla accessions were evaluated in the field under natural conditions of infection and in controlled conditions using in vitro plants root-dip inoculated by the highly pathogenic isolate Fo072. For the 26 accessions evaluated in both conditions, a high correlation was observed between field evaluation and in vitro assay. The root infection process and plant response of one susceptible and two resistant accessions challenged with Fo072 were studied using wide field and multiphoton microscopy. In susceptible V. planifolia, hyphae penetrated directly into the rhizodermis in the hairy root region then invaded the cortex through the passage cells where it induced plasmolysis, but never reached the vascular region. In the case of the resistant accessions, the penetration was stopped at the hypodermal layer. Anatomical and histochemical observations coupled with spectral analysis of the hypodermis suggested the role of lignin deposition in the resistance to Forv. The thickness of lignin constitutively deposited onto outer cell walls of hypodermis was highly correlated with the level of resistance for 21 accessions tested. The accumulation of p-coumaric and sinapic acids, two phenolic precursors of lignin, was observed in the resistant plants inoculated with Fo072, but not in the susceptible one. Altogether, our analyses enlightened the mechanisms at work in RSR resistant genotypes and should enhance the development of novel breeding strategies aimed at improving the genetic control of RSR of vanilla.

SELECTION OF CITATIONS
SEARCH DETAIL
...