Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 113(26): 7346-52, 2009 Jul 02.
Article in English | MEDLINE | ID: mdl-19317414

ABSTRACT

An approach is described for calculating anharmonic spectra for polyatomic molecules using only the ground-state probability amplitude. The underlying theory is based on properties of harmonic oscillator wave functions and is tested for Morse oscillators with a range of anharmonicities. More extensive tests are performed with H(3)O(2)(-), using the potential and dipole surfaces of Bowman and co-workers [J. Am. Chem. Soc. 2004, 126, 5042]. The resulting energies are compared to earlier studies that employed the same potential surface, and the agreement is shown to be very good. The vibrational spectra are calculated for both H(3)O(2)(-) and D(3)O(2)(-). In the case of H(3)O(2)(-), comparisons are made with a previously reported experimental spectrum below 2000 cm(-1). We also report the spectrum of H(3)O(2)(-) from 2400-4500 cm(-1), which extends 500 cm(-1) above the region reported earlier, revealing several new bands. As the only fundamentals in this spectral region involve the OH stretches, the spectrum is surprisingly rich. On the basis of comparisons of the experimental and calculated spectra, assignments are proposed for several of the features in this spectral region.

2.
J Chem Phys ; 124(17): 174302, 2006 May 07.
Article in English | MEDLINE | ID: mdl-16689566

ABSTRACT

We use a two-laser pump-probe technique coupled with messenger atom tagging to determine the bond energy of O(-) to CO(2) in the CO(3) (-) ion, a prevalent species in the upper atmosphere. In this technique, the argon-tagged ion is first electronically excited using a visible laser, then irradiated with a tunable near-infrared beam across the CO(2)...O(-) dissociation threshold while O(-) products are monitored. This method yields a bond energy of 2.79+/-0.05 eV, which is about 0.5 eV higher than previously reported. Combining this with the well-known heats of formation of O(-) and CO(2), 105.6 and -393.1 kJmol, respectively [Thermodynamic Properties of Individual Substances, edited by L. V. Gurvich, I. V. Veyts, and C. B. Alcock (Hemisphere, New York, 1989), Vol. 1 and CODATA Thermodynamic Tables, edited by O. Garvin, V. B. Parker, and J. H. J. White (Hemisphere, New York, 1987)], yields the CO(3) (-) heat of formation: DeltaH(0) (0)=-556.7+/-4.8 kJmol. The one-photon (i.e., linear) infrared and electronic spectra of CO(3) (-) are also presented and compared to those obtained previously. The one-photon electronic spectrum is nearly identical to two-photon spectra, implying that argon does not significantly perturb the ion or its symmetry. The infrared spectrum is drastically different than that obtained in an argon matrix, however, indicating that the ion is likely distorted in the matrix environment.

3.
J Phys Chem A ; 110(15): 4943-52, 2006 Apr 20.
Article in English | MEDLINE | ID: mdl-16610811

ABSTRACT

A detailed picture of the structural distortions suffered by a water molecule in direct contact with small inorganic anions (e.g., X = halide) is emerging from a series of recent vibrational spectroscopy studies of the gas-phase X-.H2O binary complexes. The extended spectral coverage (600-3800 cm(-1)) presently available with tabletop laser systems, when combined with versatile argon "messenger" techniques for acquiring action spectra of cold complexes, now provides a comprehensive survey of how the interaction evolves from an ion-solvent configuration into a three-center, two-electron covalent bond as the proton affinity of the anion increases. We focus on the behavior of H2O in the X-.H2O (X = Br, Cl, F, O, and OH) complexes, which all adopt asymmetric structures where one hydrogen atom is H-bonded to the ion while the other is free. The positions and intensities of the bands clearly reveal the mechanical consequences of both (zero-point) vibrationally averaged and infrared photoinduced excess charge delocalization mediated by intracluster proton transfer (X-.H2O --> HX.OH-). The fundamentals of the shared proton stretch become quite intense, for example, and exhibit extreme red-shifts as the intracluster proton-transfer process becomes available, first in the vibrationally excited states (F-.H2O) and then finally at the zero-point level (OH-.H2O). In the latter case, the loss of the water molecule's independent character is confirmed through the disappearance of the approximately 1600 cm(-1) HOH intramolecular bending transition and the dramatic (>3000 cm(-1)) red-shift of the shared proton stretch. An unexpected manifestation of vibrationally mediated charge transfer is also observed in the low frequency region, where the 2 <-- 0 overtones of the out-of-plane frustrated rotation of the water are remarkably intense in the Cl-.H2O and Br-.H2O spectra. This effect is traced to changes in the charge distribution along the X-.O axis as the shared proton is displaced perpendicular to it, reducing the charge transfer character of the H-bonding interaction and giving rise to a large quadratic contribution to the dipole moment component that is parallel to the bond axis. Thus, all of these systems are found to exhibit distinct spectral characteristics that can be directly traced to the crucial role of vibrationally mediated charge redistribution within the complex.

4.
J Chem Phys ; 123(16): 164309, 2005 Oct 22.
Article in English | MEDLINE | ID: mdl-16268699

ABSTRACT

Vibrational predissociation spectra are reported for size-selected NH4+ (H2O)n clusters (n=5-22) in the 2500-3900 cm(-1) region. We concentrate on the sharp free OH stretching bands to deduce the local H-bonding configurations of water molecules on the cluster surface. As in the spectra of the protonated water clusters, the free OH bands in NH4+ (H2O)n evolve from a quartet at small sizes (n<7), to a doublet around n=9, and then to a single peak at the n=20 magic number cluster, before the doublet re-emerges at larger sizes. This spectral simplification at the magic number cluster mirrors that found earlier in the H+(H2O)n clusters. We characterize the likely structures at play for the n=19 and 20 clusters with electronic structure calculations. The most stable form of the n=20 cluster is predicted to have a surface-solvated NH4+ ion that lies considerably lower in energy than isomers with the NH4+ in the interior.

5.
J Chem Phys ; 122(24): 244301, 2005 Jun 22.
Article in English | MEDLINE | ID: mdl-16035751

ABSTRACT

Predissociation spectra of the H(5)O(2) (+)RG(n)(RG = Ar,Ne) cluster ions are reported in energy regions corresponding to both the OH stretching (3350-3850 cm(-1)) and shared proton (850-1950 cm(-1)) vibrations. The two free OH stretching bands displayed by the Ne complex are quite close to the band origins identified earlier in bare H(5)O(2) (+) [L. I. Yeh, M. Okumura, J. D. Myers, J. M. Price, and Y. T. Lee, J. Chem. Phys. 91, 7319 (1989)], indicating that the symmetrical H(5)O(2) (+) "Zundel" ion remains largely intact in H(5)O(2) (+)Ne. The low-energy spectrum of the Ne complex is simpler than that observed previously for H(5)O(2) (+)Ar, and is dominated by two sharp transitions at 928 and 1047 cm(-1), with a weaker feature at 1763 cm(-1). The H(5)O(2) (+)Ar(n),n = 1-5 spectra generally exhibit complex band structures reflecting solvent-induced symmetry breaking of the Zundel core ion. The extent of solvent perturbation is evaluated with electronic structure calculations, which predict that the rare gas atoms should attach to the spectator OH groups of H(5)O(2) (+) rather than to the shared proton. In the asymmetric complexes, the shared proton resides closer to the more heavily solvated water molecule, leading to redshifts in the rare gas atom-solvated OH stretches and to blueshifts in the shared proton vibrations. The experimental spectra are compared with recent full-dimensional vibrational calculations (diffusion Monte Carlo and multimode/vibrational configuration interaction) on H(5)O(2) (+). These results are consistent with assignment of the strong low-energy bands in the H(5)O(2) (+)Ne spectrum to the vibration of the shared proton mostly along the O-O axis, with the 1763 cm(-1) band traced primarily to the out-of-phase, intramolecular bending vibrations of the two water molecules.

6.
J Chem Phys ; 122(22): 224317, 2005 Jun 08.
Article in English | MEDLINE | ID: mdl-15974678

ABSTRACT

The electron binding energies of the small hydrated amino acid anions, [glycine x (H2O)(1,2)]-, are determined using photoelectron spectroscopy. The vertical electron detachment energies (VDEs) are found to increase by approximately 0.12 eV with each additional water molecule such that the higher electron binding isomer of the dihydrate is rather robust, with a VDE value of 0.33 eV. A weak binding isomer of the dihydrate is also recovered, however, with a VDE value (0.14 eV) lower than that of the monohydrate. Unlike the situation in the smaller (n < or = 13) water cluster anions, the [Gly x (H2O)(n > or = 6)]- clusters are observed to photodissociate via water monomer evaporation upon photoexcitation in the O-H stretching region. We discuss this observation in the context of the mechanism responsible for the previously observed [S. Xu, M. Nilles, and K. H. Bowen, Jr., J. Chem. Phys. 119, 10696 (2003)] sudden onset in the cluster formation at [Gly x (H2O)5]-.

7.
Science ; 308(5729): 1765-9, 2005 Jun 17.
Article in English | MEDLINE | ID: mdl-15961665

ABSTRACT

The ease with which the pH of water is measured obscures the fact that there is presently no clear molecular description for the hydrated proton. The mid-infrared spectrum of bulk aqueous acid, for example, is too diffuse to establish the roles of the putative Eigen (H3O+) and Zundel (H5O2+) ion cores. To expose the local environment of the excess charge, we report how the vibrational spectrum of protonated water clusters evolves in the size range from 2 to 11 water molecules. Signature bands indicating embedded Eigen or Zundel limiting forms are observed in all of the spectra with the exception of the three- and five-membered clusters. These unique species display bands appearing at intermediate energies, reflecting asymmetric solvation of the core ion. Taken together, the data reveal the pronounced spectral impact of subtle changes in the hydration environment.

8.
J Phys Chem A ; 109(4): 571-5, 2005 Feb 03.
Article in English | MEDLINE | ID: mdl-16833381

ABSTRACT

We present argon predissociation vibrational spectra of the OH(-).H(2)O and Cl(-).H(2)O complexes in the 1000-1900 cm(-1) energy range, far below the OH stretching region reported in previous studies. This extension allows us to explore the fundamental transitions of the intramolecular bending vibrations associated with the water molecule, as well as that of the shared proton inferred from previous assignments of overtones in the higher energy region. Although the water bending fundamental in the Cl(-).H(2)O spectrum is in very good agreement with expectations, the OH(-).H(2)O spectrum is quite different than anticipated, being dominated by a strong feature at 1090 cm(-1). New full-dimensionality calculations of the OH(-).H(2)O vibrational level structure using diffusion Monte Carlo and the VSCF/CI methods indicate this band arises from excitation of the shared proton.

9.
J Phys Chem A ; 109(8): 1487-90, 2005 Mar 03.
Article in English | MEDLINE | ID: mdl-16833469

ABSTRACT

We exploit recent advances in argon predissociation spectroscopy to record the spectroscopic signature of the shared proton oscillations in the H3O2- system and compare the resulting spectrum with that of the H5O2+ ion taken under similar conditions. Very intense 1 <-- 0 transitions are observed below 1100 cm(-1) in both cases and are surprisingly sharp, with the 697 cm(-1) transition in H3O2- being among the lowest in energy of any shared proton system measured to date. The assignments of the three fundamental transitions associated with the three-dimensional confinement of the shared proton in H3O2- are carried out with full-dimensional (DMC) calculations to treat this strongly anharmonic vibrational problem.

10.
Science ; 306(5696): 675-9, 2004 Oct 22.
Article in English | MEDLINE | ID: mdl-15375220

ABSTRACT

The arrangement of water molecules around a hydrated electron has eluded explanation for more than 40 years. Here we report sharp vibrational bands for small gas-phase water cluster anions, (H2O)(4-6)- and (D2O)(4-6)-. Analysis of these bands reveals a detailed picture of the diffuse electron-binding site. The electron is closely associated with a single water molecule attached to the supporting network through a double H-bond acceptor motif. The local OH stretching bands of this molecule are dramatically distorted in the pentamer and smaller clusters because the excited vibrational levels are strongly coupled to the electron continuum. The vibration-to-electronic energy transfer rates, as revealed by line shape analysis, are mode-specific and remarkably fast, with the symmetric stretching mode surviving for less than 10 vibrational periods [50 fs in (H2O)4-].

11.
J Chem Phys ; 120(21): 9899-902, 2004 Jun 01.
Article in English | MEDLINE | ID: mdl-15268006

ABSTRACT

We report the gas-phase preparation of negatively charged glycine as well as the Gly(H(2)O)(1,2) (-) complexes by entrainment of the neutral precursor into an ionized supersonic expansion tuned to optimize the (H(2)O)(n) (-)Ar(m) clusters. The photoelectron spectrum of Gly(-) displays the signature of a dipole-bound species, with sufficient vibrational fine structure to characterize the core neutral as a higher energy, non-zwitterionic isomer of the amino acid.


Subject(s)
Electrochemistry/methods , Glycine/chemistry , Models, Chemical , Models, Molecular , Photochemistry/methods , Anions , Computer Simulation , Electromagnetic Fields , Electrons , Gases/chemistry , Light , Spectrum Analysis , Static Electricity
12.
Science ; 301(5631): 320-1, 2003 Jul 18.
Article in English | MEDLINE | ID: mdl-12869746
13.
Science ; 299(5611): 1367-72, 2003 Feb 28.
Article in English | MEDLINE | ID: mdl-12543981

ABSTRACT

There has been long-standing uncertainty about the number of water molecules in the primary coordination environment of the OH- and F- ions in aqueous chemistry. We report the vibrational spectra of the OH-.(H2O)n and F-.(H2O)n clusters and interpret the pattern of OH stretching fundamentals with ab initio calculations. The spectra of the cold complexes are obtained by first attaching weakly bound argon atoms to the clusters and then monitoring the photoinduced evaporation of these atoms when an infrared laser is tuned to a vibrational resonance. The small clusters (n

SELECTION OF CITATIONS
SEARCH DETAIL
...