Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Materials (Basel) ; 17(9)2024 May 01.
Article in English | MEDLINE | ID: mdl-38730934

ABSTRACT

This study aimed to evaluate the dimensional stability of maxillary diagnostic casts fabricated from a biobased model resin, which consists of 50% renewable raw materials for sustainable production, a model resin, and stone, over one month. A master maxillary stone cast was digitized with a laboratory scanner to generate a reference file. This master cast was also scanned with an intraoral scanner to additively manufacture casts with a biobased model resin (BAM) and a model resin (AM). Polyvinylsiloxane impressions of the master cast were also made and poured in type III stone (CV) (n = 8). The same laboratory scanner was used to digitize each model one day (T0), 1 week (T1), 2 weeks (T2), 3 weeks (T3), and 4 weeks (T4) after fabrication. Deviations from the reference file were calculated with an analysis software and analyzed with generalized linear model analysis (α = 0.05). The interaction between the material and the time point affected measured deviations (p < 0.001). Regardless of the time point, CV had the lowest and AM had the highest deviations (p < 0.001). BAM mostly had lower deviations at T0 and mostly had higher deviations at T4 (p ≤ 0.011). AM had the highest deviations at T4 and then at T3, whereas it had the lowest deviations at T0 (p ≤ 0.002). The measured deviations of CV increased after each time point (p < 0.001). BAM casts had deviations within the previously reported clinically acceptable thresholds over one month and had acceptable dimensional stability. Therefore, tested biobased resin may be a viable alternative for the sustainable manufacturing of maxillary diagnostic casts that are to be used clinically.

2.
J Dent ; 146: 105037, 2024 07.
Article in English | MEDLINE | ID: mdl-38703808

ABSTRACT

OBJECTIVES: To evaluate the positional accuracy of implant analogs in biobased model resin by comparing them to that of implant analogs in model resin casts and conventional analogs in dental stone casts. METHODS: Polyvinylsiloxane impressions of a partially edentulous mandibular model with a single implant were made and poured in type IV dental stone. The same model was also digitized with an intraoral scanner and additively manufactured implant casts were fabricated in biobased model resin (FotoDent biobased model) and model resin (FotoDent model 2 beige-opaque) (n = 8). All casts and the model were digitized with a laboratory scanner, and the scan files were imported into a 3-dimensional analysis software (Geomagic Control X). The linear deviations of 2 standardized points on the scan body used during digitization were automatically calculated on x-, y-, and z-axes. Average deviations were used to define precision, and 1-way analysis of variance and Tukey HSD tests were used for statistical analyses (α = 0.05). RESULTS: Biobased model resin led to higher deviations than dental stone (all axes, P ≤ 0.031) and model resin (y-axis, P = 0.015). Biobased model resin resulted in the lowest precision of implant analog position (P ≤ 0.049). The difference in the positional accuracy of implant analogs of model resin and stone casts was nonsignificant (P ≥ 0.196). CONCLUSIONS: Implant analogs in biobased model resin casts mostly had lower positional accuracy, whereas those in model resin and stone casts had similar positional accuracy. Regardless of the material, analogs deviated more towards mesial, while buccal deviations in additively manufactured casts and lingual deviations in stone casts were more prominent.


Subject(s)
Computer-Aided Design , Dental Impression Materials , Dental Impression Technique , Models, Dental , Polyvinyls , Siloxanes , Humans , Polyvinyls/chemistry , Siloxanes/chemistry , Dental Impression Materials/chemistry , Dental Prosthesis Design , Imaging, Three-Dimensional/methods , Calcium Sulfate/chemistry , Resins, Synthetic/chemistry , Dental Implants , Mandible , Dental Casting Technique , Materials Testing
3.
J Dent ; 146: 105101, 2024 07.
Article in English | MEDLINE | ID: mdl-38801940

ABSTRACT

OBJECTIVE: To evaluate the effect of polishing and layering thickness on the wear resistance of 3D-printed occlusal splint materials. METHODS: Specimens with 3 different layer thicknesses (50, 75, 100 µm) were produced in the form of a disc 3 mm thick using V-Print splint resin on a 3D-printer with digital light processing technology. (n = 16 for each thickness) All specimens were washed and cured according to the manufacturer's instructions. Half of the specimens of each layer thickness were polished with silicon carbide papers. All specimens were subjected to 120.000 cycles of a chewing simulator for 2-body wear tests. Before and after the wear test, the specimens were scanned with a laser scanner, and the images were overlaid using a 3D analysis program and the volume loss was calculated. The wear patterns of the specimens were examined under a scanning electron microscope. Statistical evaluation was performed using a Shapiro-Wilk test, 2-way ANOVA, 1-way ANOVA, and Tukey post hoc test (α = 0.05). RESULTS: While polishing had a significant effect (p = 0.003) on the wear volume of the occlusal splints, layer thickness (p = 0.105) and their interaction between polishing and layer thickness (p = 0.620) did not significantly affect the wear volume. Regardless of the polishing, the lowest mean wear was observed for D50 (0.064 mm3), followed by D75 (0.078 mm3), and D100 (0.096 mm3). However, a significant difference was observed only between polished D50 and unpolished D100. CONCLUSION: The polished 3D-printed occlusal splint resin showed higher wear resistance than the unpolished one, regardless of the layer thickness. CLINICAL SIGNIFICANCE: Since different layer thicknesses of 50 µm and greater had no effect on the wear resistance of the material, a layer thickness of 100 µm may be preferred for faster printing. However, polishing occlusal splints may reduce the amount of wear and improve clinical performance.


Subject(s)
Dental Polishing , Materials Testing , Microscopy, Electron, Scanning , Occlusal Splints , Printing, Three-Dimensional , Surface Properties , Dental Polishing/methods , Humans , Carbon Compounds, Inorganic/chemistry , Silicon Compounds/chemistry , Dental Restoration Wear , Lasers , Dental Materials/chemistry , Computer-Aided Design , Mastication/physiology
4.
J Prosthodont ; 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38102064

ABSTRACT

PURPOSE: To evaluate the color, surface properties, and flexural strength of 3D-printed permanent crown resin subjected to different post-polymerization conditions after artificial aging. MATERIALS AND METHODS: Ninety (10 × 2 mm) disc-shaped specimens were printed by using permanent crown resin with SLA technology. Specimens were divided into nine different groups, subject to post-polymerization conditions at three different times (15, 20, and 30 min) and three different temperatures (40, 60, and 80°C) (n = 10). Color and surface roughness measurements were repeated pre-post thermal aging (5.000 cycles, 5-55°C) and a flexural strength test was carried out. Data were analyzed with Shapiro-Wilk, Kruskal-Wallis, ANOVA, Tukey HSD, and Dunn tests (α < 0.05). RESULTS: ΔE00  values showed results below the acceptable color threshold, except for the 30 min 40°C group (ΔE00 <1.8). No difference was found between the relative translucency parameter and surface roughness values of the 20 min 60°C group recommended by the manufacturer and the other groups. A significant difference was found between the flexural strength values of the groups (p < 0.001). CONCLUSIONS: The color properties, surface topography, and mechanical properties of the printed permanent crown material were affected by different post-polymerization conditions: polymerized at different times and temperatures. Although the flexural strength and color change values showed promising results, more studies are required to evaluate its suitability for clinical use.

5.
J Prosthet Dent ; 2023 Jul 19.
Article in English | MEDLINE | ID: mdl-37479623

ABSTRACT

STATEMENT OF PROBLEM: Additively manufactured resins indicated for fixed definitive prostheses have been recently marketed. However, knowledge on their wear and fracture resistance when fabricated as screw-retained, implant-supported crowns and subjected to artificial aging is limited. PURPOSE: The purpose of this in vitro study was to evaluate the volume loss, maximum wear depth, and fracture resistance of screw-retained implant-supported crowns after thermomechanical aging when fabricated using additively and subtractively manufactured materials. MATERIAL AND METHODS: Two additively manufactured composite resins (Crowntec [CT] and VarseoSmile Crown Plus [VS]) and 2 subtractively manufactured materials (1 reinforced composite resin, Brilliant Crios [BC] and 1 polymer-infiltrated ceramic network, Vita Enamic [EN]) were used to fabricate standardized screw-retained, implant-supported crowns. After fabrication, the crowns were cemented on titanium base abutments and then tightened to implants embedded in acrylic resin. A laser scanner with a triangular displacement sensor (LAS-20) was used to digitize the preaging state of the crowns. Then, all crowns were subjected to thermomechanical aging (1.2 million cycles under 50 N) and rescanned. A metrology-grade analysis software program (Geomagic Control X 2020.1) was used to superimpose postaging scans over preaging scans to calculate the volume loss (mm3) and maximum wear depth (mm). Finally, all crowns were subjected to a fracture resistance test. Fracture resistance and volume loss were evaluated by using 1-way analysis of variance and Tukey Honestly significant difference (HSD) tests, whereas the Kruskal-Wallis and Dunn tests were used to analyze maximum wear depth. Chi-square tests were used to evaluate the Weibull modulus and characteristic strength data (α=.05). RESULTS: Material type affected the tested parameters (P<.001). CT and VS had higher volume loss and maximum wear depth than BC and EN (P<.001). EN had the highest fracture resistance among tested materials (P<.001), whereas BC had higher fracture resistance than CT (P=.011). The differences among tested materials were not significant when the Weibull modulus was considered (P=.199); however, VE had the highest characteristic strength (P<.001). CONCLUSIONS: Additively manufactured screw-retained, implant-supported crowns had higher volume loss and maximum wear depth. All materials had fracture resistance values higher than the previously reported masticatory forces of the premolar region; however, the higher characteristic strength of the subtractively manufactured polymer-infiltrated ceramic network may indicate its resistance to mechanical complications.

6.
J Dent ; 136: 104621, 2023 09.
Article in English | MEDLINE | ID: mdl-37453654

ABSTRACT

OBJECTIVES: To evaluate the fabrication trueness and internal fit of hybrid abutment crowns fabricated by using additively and subtractively manufactured restorative materials. METHODS: A maxillary first premolar crown with a screw access channel was designed onto a digitized master titanium base abutment. This file was used to fabricate 40 crowns additively (Crowntec (CT) and VarseoSmile Crown Plus (VS)) or subtractively (Brilliant Crios (BC) and Vita Enamic (EN)) (n = 10). Crowns were digitized with an intraoral scanner and root mean square method was used to evaluate fabrication trueness. Master abutment and the crowns when seated on the abutment were also digitized with the same intraoral scanner and triple scan method was used to evaluate internal fit. Data were analyzed either with 1-way ANOVA (surface deviations) or Kruskal-Wallis (internal fit) tests (α= 0.05). RESULTS: CT had the highest overall, external, and marginal surface deviations (P≤.030), whereas BC had the lowest external (P≤.001) and VS and EN had the lowest marginal surface deviations (P≤.007). BC had the highest intaglio surface deviations (P<.001). BC and EN had higher average gap values CT and VS (P≤.006); however, the differences within additively and subtractively manufactured materials were nonsignificant (P≥.858). CONCLUSIONS: One of the tested additively manufactured resins (CT) resulted in mostly lower trueness than that of other materials. However, deviations at the intaglio and marginal surfaces were generally small and the maximum mean difference among test groups when average gap was considered was 17.4 µm. Therefore, clinical fit of hybrid abutment crowns fabricated with tested materials may be similar.


Subject(s)
Computer-Aided Design , Dental Prosthesis Design , Dental Prosthesis Design/methods , Crowns , Bicuspid , Titanium
7.
J Esthet Restor Dent ; 35(2): 390-396, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36057856

ABSTRACT

OBJECTIVE: To compare the color stability, translucency, and biaxial flexural strength (BFS) of differently glazed advanced lithium disilicate (ALDS) with those of lithium disilicate (LDS) and zirconia-reinforced lithium silicate (ZLS) after coffee thermocycling. MATERIALS AND METHODS: Forty disk-shaped specimens were prepared from three lithium silicate based materials (CEREC Tessera, ALDS; IPS e.max CAD, LDS; Vita Suprinity, ZLS). ALDS specimens were divided into two subgroups according to glazing procedures (reduced glaze duration, ALDS-S and normal glaze duration, ALDS-N), while LDS and ZLS specimens were crystallized and glazed. Color coordinate measurements were performed before and after coffee thermocycling. Color differences (ΔE00 ) and relative translucency parameters (RTP) were calculated. Specimens were then subjected to BFS test. Statistical analysis was performed by using 1- (ΔE00 and BFS) and 2-way (RTP) ANOVA tests (α = 0.05). RESULTS: ΔE00 values of tested materials were similar (df = 3, F = 0.150, p = 0.929). Two-way ANOVA showed the significant effect of material type, coffee thermocycling, and the interaction between these parameters on RTP values (p < 0.001). Both before and after thermocycling, LDS had the highest (p ≤ 0.001) and ZLS had the lowest (p < 0.001) RTP values, while ALDS-N had higher RTP than ALDS-S (p ≤ 0.001). Among tested materials, only LDS had similar RTP values before and after thermocycling (p = 0.865) as the other materials had lower RTP values after thermocycling (p < 0.001). ALDS-N had higher BFS values than ALDS-S (p = 0.005), while LDS had similar values to ALDS specimens (p ≥ 0.201). ZLS had the highest BFS (p ≤ 0.007). CONCLUSIONS: ALDS had comparable values to those of other materials. However, reduced glazing duration resulted in decreased translucency and BFS of ALDS. CLINICAL SIGNIFICANCE: ALDS may be an appropriate restorative material for those patients with increased coffee consumption considering its color stability and ability to maintain translucency, particularly when glazed by using a conventional porcelain furnace.


Subject(s)
Dental Porcelain , Flexural Strength , Humans , Coffee , Lithium , Materials Testing , Color , Computer-Aided Design , Surface Properties , Ceramics , Silicates , Zirconium
8.
Odontology ; 111(3): 680-686, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36528659

ABSTRACT

To evaluate the effect of two different additive manufacturing technologies on the color stability, surface roughness and biaxial flexural strength of interim restorative materials after thermal aging. Disk-shaped specimens were manufactured via two types of vat polymerization methods [Stereo-lithography (SLA) and digital light processing (DLP)] and milling technology (n = 16). CIELab color coordinates and surface roughness were measured before and after thermal cycling. Then biaxial flexural strength tests were performed using a universal testing machine. The data were analyzed by Kruskal-Wallis, one-way ANOVA, and Tamhane and Tukey HSD tests (α < 0.05). There was no significant difference among ΔE values of all study groups (p = 0.191). The milled group showed a higher initial surface roughness value (p < 0.05), while there was no significant difference among the other groups after aging (p = 0.213). DLP had significantly lower flexural strength values than SLA and Milled (p = 0.000). After aging, SLA and DLP were similar to milling method, in terms of color stability and surface roughness. However, milling had an adverse effect on the initial surface roughness. The SLA and milled groups had better mechanical properties than the DLP group.


Subject(s)
Dental Materials , Flexural Strength , Materials Testing , Surface Properties , Color
9.
J Prosthodont ; 32(9): 815-820, 2023 Dec.
Article in English | MEDLINE | ID: mdl-36585789

ABSTRACT

PURPOSE: To investigate the color stability, translucency, biaxial flexural strength (BFS), and reliability of nano-lithium disilicate and fully crystallized lithium disilicate after thermal cycling and to compare with those of a commonly used lithium disilicate. MATERIALS AND METHODS: Three lithium disilicate glass-ceramics were used to prepare disk-shaped specimens (ø:12 mm, thickness: 1.2 mm) from A2 shaded HT blocks (Amber Mill, AM; Initial LiSi Block, IN; IPS e.max CAD, EX). AM and EX specimens were crystallized, and all specimens were polished with a polishing paste (Diamond Polish Mint). A spectrophotometer (CM-26d) was used to measure color coordinates before and after thermal cycling. BFS test was performed after thermal cycling. Color differences (ΔE00 ) and relative translucency parameter (RTP) values were calculated. One-way analysis of variance (ANOVA) (ΔE00 and BFS), two-way ANOVA followed by Tukey's HSD tests (RTP), and chi-square tests (Weibull modulus and characteristic strength) were used for the statistical analyses (α = 0.05). RESULTS: No significant differences were observed among the ΔE00 values of tested materials (df = 2, F = 2.933, p = 0.070). RTP values were only affected by material type (p < 0.001) as AM had the highest RTP (p < 0.001), whereas IN and EX had similar values (p ≥ 0.165). BFS values varied among tested materials (df = 2, F = 21.341, p < 0.001). AM and EX had similar BFS values (p = 0.067) that were higher than that of IN (p ≤ 0.001). Weibull moduli of the materials were similar (p = 0.305), whereas EX had the highest and IN had the lowest characteristic strength values (p < 0.001) CONCLUSIONS: Although nano-lithium disilicate had the highest translucency, all materials had imperceptible color and translucency changes after thermal cycling when reported threshold values were considered. Newly introduced lithium disilicate glass-ceramics had adequate flexural strength as compared to the precursor material.


Subject(s)
Computer-Aided Design , Flexural Strength , Reproducibility of Results , Materials Testing , Surface Properties , Dental Porcelain , Ceramics
10.
J Prosthodont ; 32(2): 132-138, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36007157

ABSTRACT

PURPOSE: To evaluate the stress generated on peripheral bone, implant, and prosthetic components while using polyetheretherketone (PEEK) and polyetherketoneketone (PEKK) hybrid abutments in two different loading situations with nonlinear 3D finite element analysis. MATERIALS AND METHODS: Standard tessellation language (STL) files of original components were used for the in-silico modeling of implant, standard titanium abutment, and hybrid abutments (PEEK and PEKK). The implant was placed in the bone block to imitate immediate loading, in which a friction coefficient of 0.3 was set between the bone and the implant interface, or delayed loading, where the bone-implant interface was assumed to be perfect. In all models, both a horizontal force (25.5 N) and a 30-degree oblique force (178 N) were applied to the long axis of the implant to the palatal surface of the restoration. The stress distribution was evaluated. RESULTS: While more stress was observed in the prosthetic structures in the PEEK and PEKK models, the stresses on the implant and bone were similar in all models, regardless of the loading situation. Under immediate loading, PEEK hybrid abutments caused excessive stress accumulation on the titanium base abutment. CONCLUSIONS: Even though abutment type did not affect the stresses on peripheral bone, PEEK and PEKK abutments generated greater stresses on the implant and the standard titanium abutment accumulated higher stresses. Oblique forces mostly generated greater stress than horizontal forces. Oblique forces on an immediately loaded implant led to stresses higher than the yield strength of a titanium implant when restored with PEEK hybrid abutment.


Subject(s)
Dental Implants , Titanium , Titanium/chemistry , Benzophenones , Polymers , Polyethylene Glycols , Ketones , Dental Abutments , Stress, Mechanical , Dental Stress Analysis , Finite Element Analysis , Dental Implant-Abutment Design
11.
Int J Prosthodont ; 35(5): 676-683, 2022.
Article in English | MEDLINE | ID: mdl-36511792

ABSTRACT

PURPOSE: To compare the effect of thermomechanical aging on implant abutment color change when using different abutment backgrounds. MATERIALS AND METHODS: In this study, three separate experimental groups (n = 10) with different implant abutment materials were used: zirconia, modified polyether ether ketone (MPEEK), and polyether ketone ketone (PEKK). Equal-sized glass-ceramic incisor crowns were cemented to the abutments using transparent dual-curing resin cement. The specimens were then subjected to the thermomechanical aging process for the clinical equivalent of 5 years of use. The color values of each specimen in the middle third and the incisal third were recorded by a digital spectrophotometer in the CIE L*a*b* color coordinates both before and after the aging process. Color differences between groups were compared using one-way analysis of variance (ANOVA), while Tukey test was used to compare differences within the groups (P = .05). RESULTS: In terms of color change (ΔE00) values, the zirconia group was found to show statistically more color changes only in the middle third (P < .000), but there was no significant difference between the the MPEEK and PEKK groups. In all groups, the ΔE00 value was clinically acceptable (ΔE00 < 1.8). CONCLUSION: After the aging process, high-performance polymer abutments caused less color change than zirconia. Therefore, esthetically satisfying results can be obtained in the anterior region, especially when highly translucent crown materials are used.


Subject(s)
Dental Abutments , Zirconium , Ceramics , Crowns , Dental Materials , Ketones , Materials Testing , Color , Dental Porcelain
12.
J Dent ; 124: 104155, 2022 09.
Article in English | MEDLINE | ID: mdl-35526752

ABSTRACT

OBJECTIVES: To evaluate the effect of printing orientation on the fracture strength of 3-unit interim fixed dental prostheses fabricated by using additive manufacturing and to compare with those fabricated by subtractive manufacturing after thermomechanical aging. MATERIALS AND METHODS: A 3-unit fixed dental prosthesis was designed by using a dental design software (exocad DentalCAD 2.2 Valetta) in standard tessellation language (STL) format. This STL file was exported into a nesting software (PreForm) and 3-unit interim fixed dental prostheses with 5 different orientations (0°, 30°, 45°, 90°, and 150°) were printed by using a 3-dimensional (3D) printing interim resin (Temporary CB) (n = 10). The same STL file was also used to mill polymethymethacrylate (DuoCAD) 3-unit interim fixed dental prostheses as the control group (n = 10). All specimens were cemented onto cobalt-chromium test models representing a maxillary first premolar and first molar tooth with a long-term temporary cement (DentoTemp), and subjected to thermomechanical aging (120,000 cycles, 1.6 Hz, 50 N, 5-55 °C). Then, all specimens were loaded until fracture by using a universal tester. The data were analyzed with nonparametric 1-way analysis of variance (Kruskal-Wallis) and Dunn's tests (α = 0.05). RESULTS: Additively manufactured specimens printed with 90° showed the lowest fracture strength values (P≤.048). However, the difference between specimens printed with 45° and 90° was nonsignificant (P>.05). Milled 3-unit interim fixed dental prostheses withstood significantly higher loads than 3-unit interim fixed dental prostheses printed with 45° and 150° (P≤.012). In addition, specimens printed with 0° showed higher fracture strength than the specimens printed with 45° (P=.01). Specimens printed with 0° and 30° presented similar fracture strength values with milled (P≥.057) and 150° printed (P>.05) specimens. CONCLUSIONS: Printing orientation had a significant effect on the fracture strength of 3-unit interim fixed dental prostheses. Among the additively manufactured samples, those printed with 0° showed similar fracture strength values with the subtractively manufactured samples. CLINICAL SIGNIFICANCE: Three-unit interim fixed dental prostheses fabricated with 0° and 30° using the 3D printing interim resin tested may be alternatives to milled PMMA in terms of fracture strength.


Subject(s)
Dental Prosthesis , Flexural Strength , Computer-Aided Design , Dental Stress Analysis , Materials Testing , Printing, Three-Dimensional
13.
J Prosthet Dent ; 2022 Mar 04.
Article in English | MEDLINE | ID: mdl-35256184

ABSTRACT

STATEMENT OF PROBLEM: Partially stabilized zirconia has been introduced as a more translucent iteration. However, knowledge of the effect of the thickness of partially stabilized zirconia on the microhardness of resin cement is sparse. PURPOSE: The purpose of this in vitro study was to evaluate the effect of thickness and material type on the translucency of partially stabilized zirconia and the microhardness of the resin cement polymerized beneath. MATERIAL AND METHODS: Specimens were prepared from 2 translucent zirconias with different yttrium content (Ceramil Zolid HT+ [HT] and Ceramil Zolid FX [SHT]) and a lithium disilicate glass-ceramic (e.max CAD [EX]) of different thicknesses (0.5, 1, 1.5, and 2 mm) (n=10). Color coordinates were recorded by using a spectrophotometer, and the relative translucency parameter (RTP) was calculated by using the CIEDE2000 formula. The microhardness of the resin cement polymerized under ceramic specimens was measured. Two-way analysis of variance, the Tukey honestly significant difference, and independent samples t tests were used to analyze the data (α=.05). RESULTS: Material type (P<.001), thickness (P<.001), and their interaction significantly affected the RTP (P=.001) and hardness values (P<.001). Regardless of the thickness, EX had the highest RTP (P≤.027), and the resin cements polymerized under EX showed the highest microhardness (P≤.002). However, the difference between HT and SHT for RTP (P≥.082) and resin cement hardness (P≥.984) was not significant. Specimens of 0.5 mm resulted in higher RTP (P≤.001) and resin cement hardness (P≤.006) than the 1.5- and 2-mm specimens of each ceramic. CONCLUSIONS: Increasing material thickness reduced the translucency of the partially stabilized zirconia and the hardness of the resin cements polymerized beneath.

14.
J Prosthodont ; 31(4): 348-355, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34383979

ABSTRACT

PURPOSE: To evaluate the fracture resistance and fracture patterns of single implant-supported crowns with different prosthetic designs and materials. MATERIALS AND METHODS: One hundred and forty-four identical crowns were fabricated from zirconia-reinforced lithium silicate (ZLS), leucite-based (LGC), and lithium disilicate (LDS) glass-ceramics, reinforced composite (RC), translucent zirconia (ZR), and ceramic-reinforced polyetheretherketone (P). These crowns were divided into 3 subgroups according to restoration design: cementable crowns on a prefabricated titanium abutment, cement-retained crown on a zirconia-titanium base abutment, and screw-cement crown (n = 8). After adhesive cementation, restorations were subjected to thermal-cycling and loaded until fracture. The fracture patterns were evaluated under a stereomicroscope. Statistical analysis was performed by using 2-way ANOVA/Bonferroni multiple comparison post hoc test (α = 0.05). RESULTS: For each prosthetic design, ZR presented the highest fracture resistance (p ≤ 0.005). Other than the differences with ZLS and RC for screw-cement crowns (p > 0.05) and RC for crowns on zirconia-titanium base abutments (p > 0.05), LGC showed the lowest fracture resistance. P endured higher loads than LDS (p < 0.001), except for the crowns on zirconia-titanium base abutments (p > 0.05). Cementable crowns presented the highest fracture resistance (p < 0.001), other than LGC and LDS. The differences between LGC crowns (p > 0.05) or LDS crowns on prefabricated titanium and zirconia-titanium abutments were nonsignificant (p = 0.133). Fragmented crown fracture was predominant in most of the restorations. Screw and abutment fractures were observed in ZR screw-cement crowns, and all P crowns were separated from the abutments. CONCLUSIONS: Restorative material and restoration design affect the fracture resistance and fracture pattern of implant-supported single-unit restorations. Clinicians may restore single-unit implants in premolar sites with the materials and prosthetic designs tested in the present study.


Subject(s)
Dental Implants , Dental Restoration Failure , Computer-Aided Design , Crowns , Dental Abutments , Dental Cements , Dental Implant-Abutment Design , Dental Materials , Dental Stress Analysis , Materials Testing , Titanium , Zirconium
15.
J Esthet Restor Dent ; 34(3): 527-533, 2022 04.
Article in English | MEDLINE | ID: mdl-34655152

ABSTRACT

OBJECTIVE: To analyze the wear rate of computer-aided design and computer-aided manufacturing (CAD/CAM) composites, polyetheretherketones and glass ceramics. MATERIAL AND METHODS: Our study groups were prepared from two different resin-based composites (Brillant Crios, Cerasmart), a glass ceramic (IPS Emax CAD) and reinforced polyetheretherketone (BioHPP) material (n = 10). Premolar teeth were used as antagonists. The specimens, which were subjected to two body wear tests (240,000 cycles, 1.2 Hz, 50N) in the chewing simulator, were scanned with a 3D laser scanner both before and after the wear test. Volume loss and wear depth were determined by means of the obtained images software program. The wear pattern was examined by scanning electron microscopy. Kruskal Wallis test served for analyzing. RESULTS: The least volume loss and wear depth were seen in the polyetheretherketone material (0.06 ± 0.04 mm3 , 0.02 ± 0.01 mm), while the maximum volume loss was seen in the groups containing resin-based composite. (p = 0.05). The volume loss value in glass ceramics is between CAD/CAM composites and polyetheretherketone. CONCLUSION: The behavior of polyetheretherketone against enamel was different from glass ceramics and composite materials in terms of the amount of wear. CLINICAL SIGNIFICANCE: Polyetheretheketone can be considered as an alternative to other chairside materials in terms of wear resistance.


Subject(s)
Composite Resins , Dental Porcelain , Ceramics , Computer-Aided Design , Dental Materials , Materials Testing , Polymers , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...