Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Science ; 377(6604): 425-428, 2022 07 22.
Article in English | MEDLINE | ID: mdl-35679355

ABSTRACT

Photonic time crystals (PTCs), materials with a dielectric permittivity that is modulated periodically in time, offer new concepts in light manipulation. We study theoretically the emission of light from a radiation source placed inside a PTC and find that radiation corresponding to the momentum bandgap is exponentially amplified, whether initiated by a macroscopic source, an atom, or vacuum fluctuations, drawing the amplification energy from the modulation. The radiation linewidth becomes narrower with time, eventually becoming monochromatic in the middle of the bandgap, which enables us to propose the concept of nonresonant tunable PTC laser. Finally, we find that the spontaneous decay rate of an atom embedded in a PTC vanishes at the band edge because of the low density of photonic states.

2.
Sci Adv ; 8(21): eabn7769, 2022 May 27.
Article in English | MEDLINE | ID: mdl-35613273

ABSTRACT

Anderson localization predicts that transport in one-dimensional uncorrelated disordered systems comes to a complete halt, experiencing no transport whatsoever. However, in reality, a disordered physical system is always correlated because it must have a finite spectrum. Common wisdom in the field states that localization is dominant only for wave packets whose spectral extent resides within the region of the wave number span of the disorder. Here, we show experimentally that Anderson localization can occur and even be dominant for wave packets residing entirely outside the spectral extent of the disorder. We study the evolution of wave packets in synthetic photonic lattices containing bandwidth-limited (correlated) disorder and observe strong localization for wave packets centered at twice the mean wave number of the disorder spectral extent and at low wave numbers, both far beyond the spectrum of the disorder. Our results shed light on fundamental aspects of disordered systems and offer avenues for using spectrally shaped disorder for controlling transport.

3.
Proc Natl Acad Sci U S A ; 119(6)2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35131857

ABSTRACT

Photonic time-crystals (PTCs) are spatially homogeneous media whose electromagnetic susceptibility varies periodically in time, causing temporal reflections and refractions for any wave propagating within the medium. The time-reflected and time-refracted waves interfere, giving rise to Floquet modes with momentum bands separated by momentum gaps (rather than energy bands and energy gaps, as in photonic crystals). Here, we present a study on the emission of radiation by free electrons in PTCs. We show that a free electron moving in a PTC spontaneously emits radiation, and when associated with momentum-gap modes, the electron emission process is exponentially amplified by the modulation of the refractive index. Moreover, under strong electron-photon coupling, the quantum formulation reveals that the spontaneous emission into the PTC bandgap experiences destructive quantum interference with the emission of the electron into the PTC band modes, leading to suppression of the interdependent emission. Free-electron physics in PTCs offers a platform for studying a plethora of exciting phenomena, such as radiating dipoles moving at relativistic speeds and highly efficient quantum interactions with free electrons.

4.
Science ; 373(6562): 1514-1517, 2021 Sep 24.
Article in English | MEDLINE | ID: mdl-34554782

ABSTRACT

Topological insulator lasers are arrays of semiconductor lasers that exploit fundamental features of topology to force all emitters to act as a single coherent laser. In this study, we demonstrate a topological insulator vertical-cavity surface-emitting laser (VCSEL) array. Each VCSEL emits vertically, but the in-plane coupling between emitters in the topological-crystalline platform facilitates coherent emission of the whole array. Our topological VCSEL array emits at a single frequency and displays interference, highlighting that the emitters are mutually coherent. Our experiments exemplify the power of topological transport of light: The light spends most of its time oscillating vertically, but the small in-plane coupling is sufficient to force the array of individual emitters to act as a single laser.

5.
Opt Express ; 28(5): 7528-7538, 2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32225978

ABSTRACT

We propose a simple all-in-line single-shot scheme for diagnostics of ultrashort laser pulses, consisting of a multi-mode fiber, a nonlinear crystal and a camera. The system records a 2D spatial intensity pattern, from which the pulse shape (amplitude and phase) are recovered, through a fast Deep Learning algorithm. We explore this scheme in simulations and demonstrate the recovery of ultrashort pulses, robustness to noise in measurements and to inaccuracies in the parameters of the system components. Our technique mitigates the need for commonly used iterative optimization reconstruction methods, which are usually slow and hampered by the presence of noise. These features make our concept system advantageous for real time probing of ultrafast processes and noisy conditions. Moreover, this work exemplifies that using deep learning we can unlock new types of systems for pulse recovery.

SELECTION OF CITATIONS
SEARCH DETAIL
...