Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 93(1): 013004, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-35104970

ABSTRACT

Electrode geometry plays a vital role in metal vapor laser performance. It has been observed that by modifying the electrode geometry, the electric field enhancement near the electrode can be reduced. Reduction in the localized electric field causes reduction in the phantom current in the metal vapor laser. On replacing the electrode geometry having eight pins with an electrode having the zero-pin configuration, a 10% decrease in the phantom current and a 23% increase in optical output power are observed. The low phantom current is responsible for higher efficiencies, large specific average output power, and improved beam characteristics of that laser in reference to a conventional copper vapor laser. It was also observed that reduction in field enhancement causes reduction in the thermal loading at the cathode fall and in the probability of thermal instability, thereby improving the discharge stability and jitter in metal vapor lasers. This simple and effective technique can also be applied to the systems requiring high current and high-volume stable discharge.

2.
Rev Sci Instrum ; 92(2): 023301, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33648140

ABSTRACT

For beam profile measurement of high-intensity proton beams in the low-energy high-intensity proton accelerator at Bhabha Atomic Research Centre, a recent noninvasive technique based on gas sheets will be explored. The gas sheet for this instrument needs to be characterized for calibration and fine tuning of the sheet properties to provide better profile measurements. Pulsed sheet generators for similar applications have been characterized using movable vacuum chambers with a small slit and a gauge mounted inside. Pitot probes are more compact instruments and have been used to measure gas jet profiles in molecular beam applications where the jet was not pulsed. The performance of Pitot probes in the measurement of pulsed supersonic gas flow in vacuum was, therefore, investigated in this work. A test system was developed to generate a pulsed supersonic gas jet in vacuum, and a Pitot probe was inserted into the flow at various axial locations with respect to the nozzle. Measurements taken along the nozzle axis using this probe, as well as the axial Mach number and impact pressure computed using computational fluid dynamics and direct simulation Monte Carlo algorithms, were compared with fitting formulas. Schlieren images of the jet with and without the Pitot tube were also taken under different vacuum conditions.

3.
Oncogene ; 32(33): 3798-808, 2013 Aug 15.
Article in English | MEDLINE | ID: mdl-22986533

ABSTRACT

Glioblastoma multiforme (GBM) is the most aggressive and the commonest primary brain tumor with a tendency for local invasiveness. The pathways of neoplasia, invasion and inflammation are inextricably linked in cancer and aberrations in several regulatory pathways for these processes have been identified. Here we have studied the FAT1 (Homo sapiens FAT tumor-suppressor homolog 1 (Drosophila)) gene to identify its role in the tumorigenecity of the gliomas. The expression of FAT1 was found to be high in grade IV glioma cell lines (U87MG, A172, U373MG and T98G) but low in grade III glioma cell lines (GOS3 and SW1088). Two cell lines (U87MG and A172) with high FAT1 expression were chosen for in vitro FAT1-knockdown studies. FAT1 knockdown by small interfering RNA resulted in decreased migration and invasion of both the cell lines along with increased expression of the tumor-suppressor gene programmed cell death 4 (PDCD4). Increased PDCD4 expression led to the attenuation of activator protein-1 (AP- 1) transcription by inhibiting c-Jun phosphorylation and resulted in concomitant decrease in the expression of AP-1-target genes like MMP3, VEGF-C and PLAU, the pro-inflammatory regulator COX-2 and cytokines IL1b and IL-6. Conversely, simultaneous silencing of PDCD4 and FAT1 in these cells significantly enhanced AP-1 activity and expression of its target genes, resulting in increase in mediators of inflammation and in enhanced migratory and invasive properties of the cells. We also observed a negative correlation between the expression of FAT1 and PDCD4 (P = 0.0145), a positive correlation between the expression of FAT1 and COX-2 (P = 0.048) and a similar positive trend between FAT1 and IL-6 expression in 35 primary human GBM samples studied. Taken together, this study identifies a novel signaling mechanism mediated by FAT1 in regulating the activity of PDCD4 and thereby the key transcription factor AP-1, which then affects known mediators of neoplasia and inflammation.


Subject(s)
Apoptosis Regulatory Proteins/metabolism , Cadherins/metabolism , Gene Expression Regulation, Neoplastic/physiology , Glioma/metabolism , RNA-Binding Proteins/metabolism , Signal Transduction/physiology , Adult , Aged , Apoptosis Regulatory Proteins/genetics , Blotting, Western , Cadherins/genetics , Cell Line, Tumor , Enzyme-Linked Immunosorbent Assay , Female , Gene Knockdown Techniques , Glioma/genetics , Glioma/pathology , Humans , Inflammation/metabolism , Male , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Polymerase Chain Reaction , RNA, Small Interfering , RNA-Binding Proteins/genetics , Transfection
4.
Rev Sci Instrum ; 79(9): 093305, 2008 Sep.
Article in English | MEDLINE | ID: mdl-19044405

ABSTRACT

State resolved atom population of metal vapor having low-lying metastable states departs from equilibrium value. It needs to be experimentally investigated. This paper reports the use of hollow cathode lamp based atomic absorption spectroscopy technique to measure online the state resolved atom density (ground and metastable) of metal vapor in an atomic beam produced by a high power electron gun. In particular, the advantage of availability of multiwavelength emission in hollow cathode lamp is used to determine the atom density in different states. Here, several transitions pertaining to a given state have also been invoked to obtain the mean value of atom density thereby providing an opportunity for in situ averaging. It is observed that at higher source temperatures the atoms from metastable state relax to the ground state. This is ascribed to competing processes of atom-atom and electron-atom collisions. The formation of collision induced virtual source is inferred from measurement of atom density distribution profile along the width of the atomic beam. The total line-of-sight average atom density measured by absorption technique using hollow cathode lamp is compared to that measured by atomic vapor deposition method. The presence of collisions is further supported by determination of beaming exponent by numerically fitting the data.

SELECTION OF CITATIONS
SEARCH DETAIL
...