Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Indian J Pharmacol ; 54(5): 321-328, 2022.
Article in English | MEDLINE | ID: mdl-36537400

ABSTRACT

OBJECTIVE: The rational use of medicines as per the World Health Organization (WHO) should be practiced globally. However, data regarding the completeness of the prescriptions and their rational use is lacking from developing countries like India. Thus, the aim of this study was to assess the prescribing patterns of drugs and completeness of prescriptions as per WHO core drug use and complementary indicators to provide real-life examples for the Indian Council of Medical Research (ICMR) online prescribing skill course for medical graduates. METHODS: Prescriptions of the patients, fulfilling inclusion criteria, attending Outpatient Departments of various specialties of tertiary care hospitals, were collected by thirteen ICMR Rational use of medicines centers located in tertiary care hospitals, throughout India. Prescriptions were evaluated for rational use of medicines according to the WHO guidelines and for appropriateness as per standard treatment guidelines using a common protocol approved by local Ethics committees. RESULTS: Among 4838 prescriptions, an average of about three drugs (3.34) was prescribed to the patients per prescription. Polypharmacy was noted in 83.05% of prescriptions. Generic drugs were prescribed in 47.58% of the prescriptions. Further, antimicrobials were prescribed in 17.63% of the prescriptions and only 4.98% of prescriptions were with injectables. During the prescription evaluation, 38.65% of the prescriptions were incomplete due to multiple omissions such as dose, duration, and formulation. CONCLUSION: Most of the parameters in the present study were out of the range of WHO-recommended prescribing indicators. Therefore, effective intervention program, like training, for the promotion of rational drug use practice was recommended to improve the prescribing pattern of drugs and the quality of prescriptions all over the country.


Subject(s)
Biomedical Research , Pharmacology, Clinical , Humans , Drug Prescriptions , Tertiary Healthcare , Practice Patterns, Physicians' , World Health Organization
2.
Front Plant Sci ; 12: 751429, 2021.
Article in English | MEDLINE | ID: mdl-35154171

ABSTRACT

Lentil (Lens culinaris Medik.) is one of the major cool-season pulse crops worldwide. Its increasing demand as a staple pulse has led to the unlocking of diverse germplasm collections conserved in the genebanks to develop its superior varieties. The Indian National Genebank, housed at the Indian Council of Agricultural Research (ICAR)-National Bureau of Plant Genetic Resources, New Delhi, India, currently has 2,324 accessions comprising 1,796 indigenous and 528 exotic collections. This study was conducted to unveil the potential of lentil germplasm by assessing its agro-morphological characteristics and diversity, identifying trait-specific germplasm, and developing a core set. The complete germplasm set was characterized for two years, i.e., 2017-2018 and 2018-2019, and data were recorded on 26 agro-morphological traits. High phenotypic variability was observed for nine quantitative and 17 qualitative traits. A core set comprising 170 accessions (137 Indian and 33 exotic) was derived based on the characterization data as well as geographical origin using a heuristic method and PowerCore software. This core set was found to be sufficiently diverse and representative of the entire collection based on the comparison made using Shannon-Weaver diversity indices and χ2 test. These results were further validated by summary statistics. The core set displayed high genetic diversity as evident from a higher coefficient of variance in comparison to the entire set for individual traits and overall Shannon-Weaver diversity indices (entire: 1.054; core: 1.361). In addition, the total variation explained by the first three principal components was higher in the core set (70.69%) than in the entire collection (68.03%). Further, the conservation of pairwise correlation values among descriptors in the entire and core set reflected the maintenance of the structure of the whole set. Based on the results, this core set is believed to represent the entire collection, completely. Therefore, it constitutes a potential set of germplasm that can be used in the genetic enhancement of lentils.

3.
Virus Res ; 280: 197903, 2020 04 15.
Article in English | MEDLINE | ID: mdl-32105764

ABSTRACT

Soybean yellow mottle mosaic virus (SYMMV) is a newly identified member of the genus Gammacarmovirus from grain legumes in India. As the modes of transmission of this virus have not been described, we assessed the possibility of SYMMV to be transmitted through seed collected from field infected mungbean plants and mechanically sap inoculated French bean plants using serological and molecular techniques followed by progeny assays. Direct antigen coated enzyme linked immunosorbent assay (DAC-ELISA) and reverse transcription polymerase chain reaction (RT-PCR) results are inconsistent with field infected mungbean seed tissues to ensure seed transmissibility irrespective of seed number used. Seed from mechanical sap inoculated French bean showed higher absorbance values in DAC-ELISA and amplification corresponding to replicase, movement and coat protein regions of SYMMV genome. The relative accumulation of SYMMV was higher in pod walls, immature seed and stamens and stigma of mechanical sap inoculated French bean. Progeny assays with infected seed revealed the seed transmissibility of SYMMV at the rate of 63.33% in mungbeanand 73.33% in French bean. Mechanical sap inoculation of mungbean progeny seedlings on French bean cv. Pusa Parvati produced characteristic symptoms of SYMMV. The results obtained from this study demonstrate that SYMMV is seed borne in nature and can be transmitted to next generation seedlings. This is the first report of seed transmission of SYMMV in mungbean and French bean.


Subject(s)
Plant Diseases/virology , Seeds/virology , Tombusviridae/genetics , Vigna/virology , Genome, Viral , India , Phaseolus/virology , Phylogeny , Seedlings/virology
4.
J Genet ; 982019 Sep.
Article in English | MEDLINE | ID: mdl-31544775

ABSTRACT

Iron (Fe) and zinc (Zn) deficiencies are wide spread in South Asia and Africa. Biofortification of food crops is a viable means of addressing micronutrient deficiencies. Lentil is an important pulse crop that provides affordable source of proteins, minerals, fibre and carbohydrates for micronutrient deficient countries. An association mapping (AM) panel of 96 diverse lentil genotypes from India and Mediterranean region was evaluated for three seasons and genotyped using 80 polymorphic simple-sequence repeat (SSR) markers for identification of the markers associated with grain Fe and Zn concentrations. A Bayesian model based clustering identified five subpopulations, adequately explaining the genetic structure of the AM panel. The linkage disequilibrium (LD) analysis using mixed linear model (MLM) identified two SSR markers, GLLC106 and GLLC108, associated with grain Fe concentration explaining 17% and 6% phenotypic variation, respectively and three SSR markers (PBALC 364, PBALC 92 and GLLC592) associated with grain Zn concentration, explaining 6%, 8% and 13% phenotypic variation, respectively. The identified SSRs exhibited consistent performance across three seasons and have potential for utilization in lentil molecular breeding programme.


Subject(s)
Iron/metabolism , Lens Plant/genetics , Zinc/metabolism , Africa , Bayes Theorem , Biofortification , DNA, Plant/genetics , Edible Grain/genetics , Genetic Linkage , Genotype , India , Lens Plant/metabolism , Linear Models , Quantitative Trait Loci
5.
Indian J Exp Biol ; 54(6): 394-9, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27468466

ABSTRACT

Lentil, as an economical source of protein, minerals and vitamins, plays important role in nutritional security of the common man. Grown mainly in West Asia, North Africa (WANA) region and South Asia, it suffers from several biotic stresses such as wilt, rust, blight and broomrape. Lentil rust caused by autoecious fungus Uromyces viciae fabae (Pers.) Schroet is a serious lentil disease in Algeria, Bangladesh, Ethiopia, India, Italy, Morocco, Pakistan and Nepal. The disease symptoms are observed during flowering and early podding stages. Rust causes severe yield losses in lentil. It can only be effectively controlled by identifying the resistant source, understanding its inheritance and breeding for host resistance. The obligate parasitic nature of pathogen makes it difficult to maintain the pathogen in culture and to apply it to screen segregating progenies under controlled growth conditions. Hence, the use of molecular markers will compliment in identification of resistant types in different breeding programs. Here, we studied the inheritance of resistance to rust in lentil using F1, F2 and F2:3 from cross PL 8 (susceptible) x L 4149 (resistant) varieties. The phenotyping of lentil population was carried out at Sirmour, India. The result of genetic analysis revealed that a single dominant gene controls rust resistance in lentil genotype L 4149. The F2 population from this cross was used to tag and map the rust resistance gene using SSR and SRAP markers. Markers such as 270 SRAP and 162 SSR were studied for polymorphism and 101 SRAP and 33 SSRs were found to be polymorphic between the parents. Two SRAP and two SSR markers differentiated the resistant and susceptible bulks. SSR marker Gllc 527 was estimated to be linked to rust resistant locus at a distance of 5.9 cM. The Gllc 527 marker can be used for marker assisted selection for rust resistance; however, additional markers closer to rust resistant locus are required. The markers linked to the rust resistance gene can serve as starting points for map-based cloning of the rust resistance gene.


Subject(s)
DNA, Plant/genetics , Disease Resistance/genetics , Genetic Markers/genetics , Lens Plant/genetics , Lens Plant/microbiology , Plant Diseases/genetics , Basidiomycota , India
6.
Appl Plant Sci ; 1(7)2013 Jul.
Article in English | MEDLINE | ID: mdl-25202567

ABSTRACT

PREMISE OF THE STUDY: We developed microsatellite markers in the legume Lens culinaris from publicly available databases to enrich the limited marker resource available for the crop. • METHODS AND RESULTS: Eighty-two primer sets were identified using expressed sequence sets of L. culinaris available in the National Center for Biotechnology Information (NCBI) database and were characterized in six species of Lens. Among them, 20 simple sequence repeat (SSR) primers produced no amplification product, 43 produced monomorphic products, and 19 were polymorphic. The primers amplified mono-, di-, tri-, tetra-, penta-, and hexanucleotide repeats with one to four alleles. These SSR loci successfully amplified in five related wild species, with a total of 61 primer pairs in L. nigricans and L. odemensis (98.39%), 59 in L. tomentosus (95.1%), and 60 in L. ervoides and L. orientalis (96.7%), respectively. • CONCLUSIONS: The microsatellite markers discovered in this study will be useful in genetic mapping, marker-assisted breeding, and characterization of germplasm.

SELECTION OF CITATIONS
SEARCH DETAIL
...