Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 May 10.
Article in English | MEDLINE | ID: mdl-38766047

ABSTRACT

All multicellular systems produce and dynamically regulate extracellular matrices (ECM) that play important roles in both biochemical and mechanical signaling. Though the spatial arrangement of these extracellular assemblies is critical to their biological functions, visualization of ECM structure is challenging, in part because the biomolecules that compose the ECM are difficult to fluorescently label individually and collectively. Here, we present a cell-impermeable small molecule fluorophore, termed Rhobo6, that turns on and red shifts upon reversible binding to glycans. Given that most ECM components are densely glycosylated, the dye enables wash-free visualization of ECM, in systems ranging from in vitro substrates to in vivo mouse mammary tumors. Relative to existing techniques, Rhobo6 provides a broad substrate profile, superior tissue penetration, nonperturbative labeling, and negligible photobleaching. This work establishes a straightforward method for imaging the distribution of ECM in live tissues and organisms, lowering barriers for investigation of extracellular biology.

2.
Elife ; 122023 01 25.
Article in English | MEDLINE | ID: mdl-36695574

ABSTRACT

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/metabolism , Endosomes/metabolism , Ion Channels/metabolism
3.
bioRxiv ; 2022 Sep 03.
Article in English | MEDLINE | ID: mdl-36263072

ABSTRACT

The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as a viroporin. Here we show that neither SARS-CoV-2 nor SARS-CoV-1 form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a basic aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.

4.
Proc Natl Acad Sci U S A ; 116(9): 3530-3535, 2019 02 26.
Article in English | MEDLINE | ID: mdl-30808746

ABSTRACT

Glucose metabolism in vertebrate retinas is dominated by aerobic glycolysis (the "Warburg Effect"), which allows only a small fraction of glucose-derived pyruvate to enter mitochondria. Here, we report evidence that the small fraction of pyruvate in photoreceptors that does get oxidized by their mitochondria is required for visual function, photoreceptor structure and viability, normal neuron-glial interaction, and homeostasis of retinal metabolism. The mitochondrial pyruvate carrier (MPC) links glycolysis and mitochondrial metabolism. Retina-specific deletion of MPC1 results in progressive retinal degeneration and decline of visual function in both rod and cone photoreceptors. Using targeted-metabolomics and 13C tracers, we found that MPC1 is required for cytosolic reducing power maintenance, glutamine/glutamate metabolism, and flexibility in fuel utilization.


Subject(s)
Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/genetics , Retina/metabolism , Vision, Ocular/genetics , Animals , Glucose/metabolism , Glycolysis/genetics , Humans , Mice , Mitochondria/genetics , Mitochondrial Membrane Transport Proteins/metabolism , Monocarboxylic Acid Transporters , Pyruvic Acid/metabolism , Retina/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology
5.
J Neurosci ; 39(8): 1347-1364, 2019 02 20.
Article in English | MEDLINE | ID: mdl-30573647

ABSTRACT

Mutations in the Joubert syndrome-associated small GTPase ARL13B are linked to photoreceptor impairment and vision loss. To determine the role of ARL13B in the development, function, and maintenance of ciliated photoreceptors, we generated a pan-retina knock-out (Six3-Cre) and a rod photoreceptor-specific inducible conditional knock-out (Pde6g-CreERT2) of ARL13B using murine models. Embryonic deletion of ARL13B led to defects in retinal development with reduced cell proliferation. In the absence of ARL13B, photoreceptors failed to develop outer segment (OS) membranous discs and axonemes, resulting in loss of function and rapid degeneration. Additionally, the majority of photoreceptor basal bodies did not dock properly at the apical edge of the inner segments. The removal of ARL13B in adult rod photoreceptor cells after maturation of OS resulted in loss of photoresponse and vesiculation in the OS. Before changes in photoresponse, removal of ARL13B led to mislocalization of rhodopsin, prenylated phosphodiesterase-6 (PDE6), and intraflagellar transport protein-88 (IFT88). Our findings show that ARL13B is required at multiple stages of retinogenesis, including early postnatal proliferation of retinal progenitor cells, development of photoreceptor cilia, and morphogenesis of photoreceptor OS discs regardless of sex. Last, our results establish a need for ARL13B in photoreceptor maintenance and protein trafficking.SIGNIFICANCE STATEMENT The normal development of photoreceptor cilia is essential to create functional, organized outer segments with stacked membrane discs that house the phototransduction proteins necessary for sight. Our study identifies a complex role for ARL13B, a small GTPase linked to Joubert syndrome and visual impairment, at various stages of photoreceptor development. Loss of ARL13B led to defects in retinal proliferation, altered placement of basal bodies crucial for components of the cilium (transition zone) to emanate, and absence of photoreceptor-stacked discs. These defects led to extinguished visual response and dysregulated protein trafficking. Our findings show the complex role ARL13B plays in photoreceptor development, viability, and function. Our study accounts for the severe retinal impairment observed in ARL13B-linked Joubert syndrome patients.


Subject(s)
ADP-Ribosylation Factors/physiology , Retina/metabolism , Rod Cell Outer Segment/metabolism , ADP-Ribosylation Factors/deficiency , ADP-Ribosylation Factors/genetics , Aging/metabolism , Animals , Axoneme/metabolism , Axoneme/ultrastructure , Cilia/metabolism , Cilia/ultrastructure , Eye Proteins/metabolism , Female , Gene Expression Regulation, Developmental , Gene Knockout Techniques , Male , Mice , Mice, Inbred C57BL , Organelle Biogenesis , Protein Transport/physiology , Retina/abnormalities , Retina/embryology , Retina/growth & development , Rod Cell Outer Segment/radiation effects , Sensory Rhodopsins/metabolism
6.
Mol Biol Cell ; 29(13): 1590-1598, 2018 07 01.
Article in English | MEDLINE | ID: mdl-29718757

ABSTRACT

The outer segment (OS) of photoreceptor cells is an elaboration of a primary cilium with organized stacks of membranous disks that contain the proteins needed for phototransduction and vision. Though ciliary formation and function has been well characterized, little is known about the role of cilia in the development of photoreceptor OS. Nevertheless, progress has been made by studying mutations in ciliary proteins, which often result in malformed OSs and lead to blinding diseases. To investigate how ciliary proteins contribute to OS formation, we generated a knockout (KO) mouse model for ARL2BP, a ciliary protein linked to retinitis pigmentosa. The KO mice display an early and progressive reduction in visual response. Before photoreceptor degeneration, we observed disorganization of the photoreceptor OS, with vertically aligned disks and shortened axonemes. Interestingly, ciliary doublet microtubule (MT) structure was also impaired, displaying open B-tubule doublets, paired with loss of singlet MTs. On the basis of results from this study, we conclude that ARL2BP is necessary for photoreceptor ciliary doublet formation and axoneme elongation, which is required for OS morphogenesis and vision.


Subject(s)
Carrier Proteins/metabolism , Cilia/metabolism , Retinal Photoreceptor Cell Outer Segment/metabolism , Retinitis Pigmentosa/metabolism , Amino Acid Sequence , Animals , Axoneme/metabolism , Axoneme/ultrastructure , Carrier Proteins/chemistry , Cell Survival , Cilia/ultrastructure , Light Signal Transduction , Membrane Transport Proteins , Mice, Inbred C57BL , Mice, Knockout , Retinal Photoreceptor Cell Outer Segment/ultrastructure , Retinitis Pigmentosa/pathology , Transcription Factors
7.
Hum Mol Genet ; 27(2): 283-294, 2018 01 15.
Article in English | MEDLINE | ID: mdl-29126234

ABSTRACT

Bardet-Biedl syndrome (BBS) is an autosomal recessive ciliopathy characterized by developmental abnormalities and vision loss. To date, mutations in 21 genes have been linked to BBS. The products of eight of these BBS genes form a stable octameric complex termed the BBSome. Mutations in BBS8, a component of the BBSome, cause early vision loss, but the role of BBS8 in supporting vision is not known. To understand the mechanisms by which BBS8 supports rod and cone photoreceptor function, we generated animal models lacking BBS8. The loss of BBS8 protein led to concomitant decrease in the levels of BBSome subunits, BBS2 and BBS5 and increase in the levels of the BBS1 and BBS4 subunits. BBS8 ablation was associated with severe reduction of rod and cone photoreceptor function and progressive degeneration of each photoreceptor subtype. We observed disorganized and shortened photoreceptor outer segments (OS) at post-natal day 10 as the OS elaborates. Interestingly, loss of BBS8 led to changes in the distribution of photoreceptor axonemal proteins and hyper-acetylation of ciliary microtubules. In contrast to properly localized phototransduction machinery, we observed OS accumulation of syntaxin3, a protein normally found in the cytoplasm and the synaptic termini. In conclusion, our studies demonstrate the requirement for BBS8 in early development and elaboration of ciliated photoreceptor OS, explaining the need for BBS8 in normal vision. The findings from our study also imply that early targeting of both rods and cones in BBS8 patients is crucial for successful restoration of vision.


Subject(s)
Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Photoreceptor Cells/metabolism , Animals , Bardet-Biedl Syndrome/genetics , Bardet-Biedl Syndrome/metabolism , Bardet-Biedl Syndrome/pathology , Cilia/metabolism , Cytoskeletal Proteins , Disease Models, Animal , Mice , Mice, Knockout , Neurons/metabolism , Neurons/pathology , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...