Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Inorg Chem ; 6(3): 232-46, 2001 Mar.
Article in English | MEDLINE | ID: mdl-11315559

ABSTRACT

Mössbauer, 57Fe ENDOR, CW and pulsed EPR experiments were performed on the reduced and the oxidized high-potential iron proteins (HiPIPs) of the wild type (WT) and the C77S mutant from Chromatium vinosum. The EPR spectra of the oxidized WT and mutant show three species respectively having nearly the same g-values but strongly changed spectral contributions. Relaxation times were estimated for oxidized WT and mutant at T = 5 K with pulsed EPR. A-tensor components of both iron pairs were obtained by 57Fe ENDOR, proving a similar magnetic structure for the WT and the mutant. Electronic relaxation has to be taken into account at T = 5 K in native and mutated oxidized HiPIPs to achieve agreement between Mössbauer and 57Fe ENDOR spectroscopies. The Mössbauer spectroscopy shows that the oxidized cluster contains a pure ferric and a mixed-valence iron pair coupled antiparallel. While all cluster irons from reduced C. vinosum WT are indistinguishable in the Mössbauer spectrum, the reduced C77S mutant shows a non-equivalence between the serine-bound and the three cysteine-ligated iron ions. The Mössbauer parameters confirm a loss of the covalent character of the iron bond when S is replaced by O and indicate a shift of the cluster's electron cloud towards the serine. Mössbauer spectra of the oxidized mutant can be simulated with two models: model I introduces a single electronic isomer with the serine always ligated to a ferric iron. Model II assumes two equally populated electronic isomers with the serine ligated to a ferric iron and a mixed-valence iron, respectively. The latter model is in better agreement with EPR and NMR.


Subject(s)
Chromatium/chemistry , Iron-Sulfur Proteins/chemistry , Iron-Sulfur Proteins/metabolism , Mutation , Photosynthetic Reaction Center Complex Proteins , Bacterial Proteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Electron Spin Resonance Spectroscopy/methods , Iron-Sulfur Proteins/genetics , Isomerism , Magnetics , Molecular Structure , Oxidation-Reduction , Spectroscopy, Mossbauer/methods
2.
J Biol Inorg Chem ; 4(6): 727-41, 1999 Dec.
Article in English | MEDLINE | ID: mdl-10631604

ABSTRACT

Mössbauer spectra of the oxidized [Fe4S4]3+ and the reduced [Fe4S4]2+ clusters in the high-potential iron protein I from Ectothiorhodospira halophila were measured in a temperature range from 5 K to 240 K. EPR measurements and 57Fe electron-nuclear double resonance (ENDOR) experiments were carried out with the oxidized protein. In the oxidized state the cluster has a net spin S = 1/2 and is paramagnetic. As common in [Fe4S4]3+ clusters, the Mössbauer spectrum was simulated with two species contributing equally to the absorption area: two Fe3+ atoms couple to the "ferric-ferric" pair, and one Fe2+ and one Fe3+ atom give the "ferric-ferrous pair". For the simulation of the Mössbauer spectrum, g-values were taken from EPR measurements. A-tensor components were determined by 57Fe ENDOR experiments that turned out to be a necessary source of estimating parameters independently. In order to obtain a detailed agreement of Mössbauer and ENDOR data, electronic relaxation has to be taken into account. Relaxing the symmetry condition in a way that the electric field gradient tensor does not coincide with g- and A-tensors yielded an even better agreement of experimental and theoretical Mössbauer spectra. Spin-spin and spinlattice relaxation times were estimated by pulsed EPR; the former turned out to be the dominating mechanism at T = 5 K. Relaxation times measured by pulsed EPR and obtained from the Mössbauer fit were compared and yield nearly identical values. The reduced cluster has one additional electron and has a diamagnetic (S = 0) ground state. All the four irons are indistinguishable in the Mössbauer spectrum, indicating a mixed-valence state of Fe2.5+ for each.


Subject(s)
Bacterial Proteins/chemistry , Halorhodospira halophila/chemistry , Iron-Sulfur Proteins/chemistry , Photosynthetic Reaction Center Complex Proteins , Electron Spin Resonance Spectroscopy/methods , Protein Conformation , Recombinant Proteins/chemistry , Spectroscopy, Mossbauer
SELECTION OF CITATIONS
SEARCH DETAIL
...