Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Technol ; : 1-13, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38783406

ABSTRACT

The manufacture of foundry metal parts generates various types of mineral wastes. Studies mentioned in the literature are mainly interested in the characterisation of foundry sands and their recycling way. The other wastes (finer than sand) are not dealt and are currently stored in landfills without any recycling solution. This paper aims to fill this gap and reports the complete characterisation of foundry wastes (FW) we carried out to find a way of recycling these materials. FWs were characterised by X-ray fluorescence, X-ray diffraction, scanning electron microscopy and thermogravimetry analyses (TGAs). Leaching tests complying with the NF EN 12457-2 standard were also carried out to evaluate the pollution degree of the different waste products. The results of this work that foundries do not produce just one type of waste, but several. Five types of waste were thus analysed and the results indicated in the first step that each sand was unique and in a second one that the two foundries present a certain similarity with regard to their materials. This complete characterisation study will provide a better understanding of their chemical composition and degree of pollution, so that they can be used more effectively in cement blends, which will be the subject of the rest of this study. The reuse of FW in concrete and mortars is possible and can reduce the environmental impact caused by their storage in landfills.

2.
Environ Technol ; 41(9): 1199-1208, 2020 Apr.
Article in English | MEDLINE | ID: mdl-30231770

ABSTRACT

Municipal solid waste incineration (MSWI) fly ashes are hazardous waste since they contain organic pollutants, heavy metals and an important amount of various soluble salts. However their chemical composition is interesting for their valorization in cement production. The objective of this paper is to assess the possibility of MSWI fly ashes reuse as cement raw meal, after pre-treatment, at a laboratory scale. The environmental impact has also been studied (analyses of the metals, of dioxins and furans and leaching tests on clinker produced). Experimental results show that the replacement of MSWI fly ash could be taken up to 30% in the raw mixes, according to the chemical composition of the MSWI fly ashes. This substitution is also to be refined according to the content of hazardous elements contents. This study also shows that the pre-treatment must be well carried out in order to limit the alkaline contents which may affect the quality of the cementitious phases.


Subject(s)
Metals, Heavy , Refuse Disposal , Carbon , Coal Ash , Incineration , Particulate Matter , Solid Waste
3.
Materials (Basel) ; 12(12)2019 Jun 19.
Article in English | MEDLINE | ID: mdl-31248153

ABSTRACT

The investigation presented here features the design of a cleaner and greener chemical process for the conversion of industrial wastes into super-oxidizing materials. The waste of interest is the iron sulfate heptahydrate (FeSO4·7H2O) mainly generated through the sulfate route used for titanium dioxide industrial production. The products of this transformation process are alkali ferrates (A2FeO4, A = Na, K) containing iron in its hexavalent state and considered as powerful oxidants characterized by properties useful for cleaning waters, wastewaters, and industrial effluents. The proposed process includes two steps: (i) The first step consisting of the pre-mixing of two solids (AOH with FeSO4·xH2O) in a rotary reactor allowing the coating of iron sulfate in the alkali hydroxides through solid-solid reactions; and (ii) the second step involves the synthesis of alkali ferrates in a fluidized bed by oxidation of the single solid obtained in the first step in diluted chlorine. The chemical synthesis of alkali ferrates can be carried out within a timeframe of a few minutes. The usage of a fluidized bed enhanced the energy and mass transfer allowing a quasi-complete control of the ferrate synthesis process. The alkali ferrate synthesis process described here possesses many characteristics aligned with the principles of the "green chemistry".

SELECTION OF CITATIONS
SEARCH DETAIL
...