Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Front Neurosci ; 17: 1276495, 2023.
Article in English | MEDLINE | ID: mdl-37901420

ABSTRACT

Introduction: Severe traumatic brain injury (TBI) is the world's leading cause of permanent neurological disability in children. TBI-induced neurological deficits may be driven by neuroinflammation post-injury. Abnormal activity of SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) has been associated with dysregulated immunological responses, but the role of SHIP-1 in the brain remains unclear. The current study investigated the immunoregulatory role of SHIP-1 in a mouse model of moderate-severe pediatric TBI. Methods: SHIP-1+/- and SHIP-1-/- mice underwent experimental TBI or sham surgery at post-natal day 21. Brain gene expression was examined across a time course, and immunofluorescence staining was evaluated to determine cellular immune responses, alongside peripheral serum cytokine levels by immunoassays. Brain tissue volume loss was measured using volumetric analysis, and behavior changes both acutely and chronically post-injury. Results: Acutely, inflammatory gene expression was elevated in the injured cortex alongside increased IBA-1 expression and altered microglial morphology; but to a similar extent in SHIP-1-/- mice and littermate SHIP-1+/- control mice. Similarly, the infiltration and activation of CD68-positive macrophages, and reactivity of GFAP-positive astrocytes, was increased after TBI but comparable between genotypes. TBI increased anxiety-like behavior acutely, whereas SHIP-1 deficiency alone reduced general locomotor activity. Chronically, at 12-weeks post-TBI, SHIP-1-/- mice exhibited reduced body weight and increased circulating cytokines. Pro-inflammatory gene expression in the injured hippocampus was also elevated in SHIP-1-/- mice; however, GFAP immunoreactivity at the injury site in TBI mice was lower. TBI induced a comparable loss of cortical and hippocampal tissue in both genotypes, while SHIP-1-/- mice showed reduced general activity and impaired working memory, independent of TBI. Conclusion: Together, evidence does not support SHIP-1 as an essential regulator of brain microglial morphology, brain immune responses, or the extent of tissue damage after moderate-severe pediatric TBI in mice. However, our data suggest that reduced SHIP-1 activity induces a greater inflammatory response in the hippocampus chronically post-TBI, warranting further investigation.

2.
Cells ; 12(19)2023 09 28.
Article in English | MEDLINE | ID: mdl-37830592

ABSTRACT

Chronic neuroinflammation and glial activation are associated with the development of many neurodegenerative diseases and neuropsychological disorders. Recent evidence suggests that the protein tyrosine kinase Lyn and the lipid phosphatase SH2 domain-containing inositol 5' phosphatase-1 (SHIP-1) regulate neuroimmunological responses, but their homeostatic roles remain unclear. The current study investigated the roles of Lyn and SHIP-1 in microglial responses in the steady-state adult mouse brain. Young adult Lyn-/- and SHIP-1-/- mice underwent a series of neurobehavior tests and postmortem brain analyses. The microglial phenotype and activation state were examined by immunofluorescence and flow cytometry, and neuroimmune responses were assessed using gene expression analysis. Lyn-/- mice had an unaltered behavioral phenotype, neuroimmune response, and microglial phenotype, while SHIP-1-/- mice demonstrated reduced explorative activity and exhibited microglia with elevated activation markers but reduced granularity. In addition, expression of several neuroinflammatory genes was increased in SHIP-1-/- mice. In response to LPS stimulation ex vivo, the microglia from both Lyn-/- and SHIP-1-/- showed evidence of hyper-activity with augmented TNF-α production. Together, these findings demonstrate that both Lyn and SHIP-1 have the propensity to control microglial responses, but only SHIP-1 regulates neuroinflammation and microglial activation in the steady-state adult brain, while Lyn activity appears dispensable for maintaining brain homeostasis.


Subject(s)
Microglia , Neuroinflammatory Diseases , Mice , Animals , Microglia/metabolism , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/genetics , Phosphatidylinositol-3,4,5-Trisphosphate 5-Phosphatases/metabolism , Signal Transduction , Brain/metabolism
3.
J Neurotrauma ; 40(19-20): 2174-2192, 2023 10.
Article in English | MEDLINE | ID: mdl-37221897

ABSTRACT

Traumatic brain injury (TBI) often causes seizures associated with a neuroinflammatory response and neurodegeneration. TBI responses may be influenced by differences between individuals at a genetic level, yet this concept remains understudied. Here, we asked whether inherent differences in one's vulnerability to acquired epilepsy would determine acute physiological and neuroinflammatory responses acutely after experimental TBI, by comparing selectively bred "seizure-prone" (FAST) rats with "seizure-resistant" (SLOW) rats, as well as control parental strains (Long Evans and Wistar rats). Eleven-week-old male rats received a moderate-to-severe lateral fluid percussion injury (LFPI) or sham surgery. Rats were assessed for acute injury indicators and neuromotor performance, and blood was serially collected. At 7 days post-injury, brains were collected for quantification of tissue atrophy by cresyl violet (CV) histology, and immunofluorescent staining of activated inflammatory cells. FAST rats showed an exacerbated physiological response acutely post-injury, with a 100% seizure rate and mortality within 24 h. Conversely, SLOW rats showed no acute seizures and a more rapid neuromotor recovery compared with controls. Brains from SLOW rats also showed only modest immunoreactivity for microglia/macrophages and astrocytes in the injured hemisphere compared with controls. Further, group differences were apparent between the control strains, with greater neuromotor deficits observed in Long Evans rats compared with Wistars post-TBI. Brain-injured Long Evans rats also showed the most pronounced inflammatory response to TBI across multiple brain regions, whereas Wistar rats showed the greatest extent of regional brain atrophy. These findings indicate that differential genetic predisposition to develop acquired epilepsy (i.e., FAST vs. SLOW rat strains) determines acute responses after experimental TBI. Differences in the neuropathological response to TBI between commonly used control rat strains is also a novel finding, and an important consideration for future study design. Our results support further investigation into whether genetic predisposition to acute seizures predicts the chronic outcomes after TBI, including the development of post-traumatic epilepsy.


Subject(s)
Brain Injuries, Traumatic , Brain Injuries , Epilepsy , Rats , Male , Animals , Rats, Wistar , Rats, Long-Evans , Genetic Predisposition to Disease , Brain Injuries, Traumatic/complications , Epilepsy/etiology , Seizures/etiology , Brain Injuries/complications , Atrophy , Disease Models, Animal
4.
Exp Neurol ; 364: 114407, 2023 06.
Article in English | MEDLINE | ID: mdl-37059414

ABSTRACT

Impairments in social and cognitive function are a common consequence of pediatric traumatic brain injury (TBI). Rehabilitation has the potential to promote optimal behavioral recovery. Here, we evaluated whether an enhanced social and/or cognitive environment could improve long-term outcomes in a preclinical model of pediatric TBI. Male C57Bl/6 J mice received a moderately-severe TBI or sham procedure at postnatal day 21. After one week, mice were randomized to different social conditions (minimal socialization, n = 2/cage; or social grouping, n = 6/cage), and housing conditions (standard cage, or environmental enrichment (EE), incorporating sensory, motor, and cognitive stimuli). After 8 weeks, neurobehavioral outcomes were assessed, followed by post-mortem neuropathology. We found that TBI mice exhibited hyperactivity, spatial memory deficits, reduced anxiety-like behavior, and reduced sensorimotor performance compared to age-matched sham controls. Pro-social and sociosexual behaviors were also reduced in TBI mice. EE increased sensorimotor performance, and the duration of sociosexual interactions. Conversely, social housing reduced hyperactivity and altered anxiety-like behavior in TBI mice, and reduced same-sex social investigation. TBI mice showed impaired spatial memory retention, except for TBI mice exposed to both EE and group housing. In the brain, while TBI led to significant regional tissue atrophy, social housing had modest neuroprotective effects on hippocampal volumes, neurogenesis, and oligodendrocyte progenitor numbers. In conclusion, manipulation of the post-injury environment has benefit for chronic behavioral outcomes, but the benefits are specific to the type of enrichment available. This study improves understanding of modifiable factors that may be harnessed to optimize long-term outcomes for survivors of early-life TBI.


Subject(s)
Brain Injuries, Traumatic , Cognition , Social Behavior , Animals , Male , Mice , Brain/pathology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/physiopathology , Brain Injuries, Traumatic/rehabilitation , Cognition/physiology , Maze Learning , Random Allocation , Disease Models, Animal , Behavior, Animal/physiology
5.
J Neurotrauma ; 40(3-4): 365-382, 2023 02.
Article in English | MEDLINE | ID: mdl-36070444

ABSTRACT

Pediatric traumatic brain injury (TBI) is a major public health issue, and a risk factor for the development of post-traumatic epilepsy that may profoundly impact the quality of life for survivors. As the majority of neurotrauma research is focused on injury to the adult brain, our understanding of the developing brain's response to TBI remains incomplete. Neuroinflammation is an influential pathophysiological mechanism in TBI, and is thought to increase neuronal hyperexcitability, rendering the brain more susceptible to the onset of seizures and/or epileptogenesis. We here hypothesized that peripheral blood-derived macrophages, recruited into the injured brain via C-C motif ligand 2 (CCL2) chemokine/C-C chemokine receptor type 2 (CCR2) signaling, contributes to neuroinflammation and thus seizure susceptibility after experimental pediatric TBI. Using Ccr2 gene-deficient mice in the controlled cortical impact (CCI) model of TBI, in 3-week-old male mice we found that TBI led to an increase in susceptibility to pentylenetetrazol (PTZ)-evoked seizures, associated with considerable cortical tissue loss, a robust cellular neuroinflammatory response, and oxidative stress. Intriguingly, although Ccr2-deficiency increased CCL2 levels in serum, it did not exacerbate seizure susceptibility or the neuroinflammatory cellular response after pediatric TBI. Similarly, acute post-injury treatment with a CCR2 antagonist did not influence seizure susceptibility or the extent of tissue damage in wild-type (WT) mice. Together, our findings suggest that CCR2 is not a crucial driver of epileptogenesis or neuroinflammation after TBI in the developing brain. We propose that age may be an important factor differentiating our findings from previous studies in which targeting CCL2/CCR2 has been reported to be anti-inflammatory, neuroprotective or anti-seizure.


Subject(s)
Brain Injuries, Traumatic , Neuroinflammatory Diseases , Mice , Male , Animals , Quality of Life , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/genetics , Inflammation , Brain/metabolism , Chemokine CCL2/genetics , Receptors, CCR2/genetics , Receptors, CCR2/metabolism , Mice, Inbred C57BL
6.
J Neuroinflammation ; 19(1): 291, 2022 Dec 08.
Article in English | MEDLINE | ID: mdl-36482407

ABSTRACT

The pathophysiology of traumatic brain injury (TBI) requires further characterization to fully elucidate changes in molecular pathways. Cerebrospinal fluid (CSF) provides a rich repository of brain-associated proteins. In this retrospective observational study, we implemented high-resolution mass spectrometry to evaluate changes to the CSF proteome after severe TBI. 91 CSF samples were analyzed with mass spectrometry, collected from 16 patients with severe TBI (mean 32 yrs; 81% male) on day 0, 1, 2, 4, 7 and/or 10 post-injury (8-16 samples/timepoint) and compared to CSF obtained from 11 non-injured controls. We quantified 1152 proteins with mass spectrometry, of which approximately 80% were associated with CSF. 1083 proteins were differentially regulated after TBI compared to control samples. The most highly-upregulated proteins at each timepoint included neutrophil elastase, myeloperoxidase, cathepsin G, matrix metalloproteinase-8, and S100 calcium-binding proteins A8, A9 and A12-all proteins involved in neutrophil activation, recruitment, and degranulation. Pathway enrichment analysis confirmed the robust upregulation of proteins associated with innate immune responses. Conversely, downregulated pathways included those involved in nervous system development, and several proteins not previously identified after TBI such as testican-1 and latrophilin-1. We also identified 7 proteins (GM2A, Calsyntenin 1, FAT2, GANAB, Lumican, NPTX1, SFRP2) positively associated with an unfavorable outcome at 6 months post-injury. Together, these findings highlight the robust innate immune response that occurs after severe TBI, supporting future studies to target neutrophil-related processes. In addition, the novel proteins we identified to be differentially regulated by severe TBI warrant further investigation as potential biomarkers of brain damage or therapeutic targets.


Subject(s)
Brain Injuries, Traumatic , Proteomics , Humans , Male , Female
7.
Sci Rep ; 12(1): 14175, 2022 09 01.
Article in English | MEDLINE | ID: mdl-36050485

ABSTRACT

While it is well-established that bone responds dynamically to mechanical loading, the effects of mild traumatic brain injury (mTBI) on cranial bone composition are unclear. We hypothesized that repeated mTBI (rmTBI) would change the microstructure of cranial bones, without gross skull fractures. To address this, young adult female Piebald Viral Glaxo rats received sham, 1×, 2× or 3× closed-head mTBIs delivered at 24 h intervals, using a weight-drop device custom-built for reproducible impact. Skull bones were collected at 2 or 10 weeks after the final injury/sham procedure, imaged by micro computed tomography and analyzed at predetermined regions of interest. In the interparietal bone, proximal to the injury site, modest increases in bone thickness were observed at 2 weeks, particularly following 2× and 3× mTBI. By 10 weeks, 2× mTBI induced a robust increase in the volume and thickness of the interparietal bone, alongside a corresponding decrease in the volume of marrow cavities in the diploë region. In contrast, neither parietal nor frontal skull samples were affected by rmTBI. Our findings demonstrate time- and location-dependent effects of rmTBI on cranial bone structure, highlighting a need to consider microstructural alterations to cranial bone when assessing the consequences of rmTBI.


Subject(s)
Brain Concussion , Brain Injuries, Traumatic , Animals , Brain Concussion/diagnostic imaging , Disease Models, Animal , Female , Rats , Skull/diagnostic imaging , Time , X-Ray Microtomography
8.
Brain Behav Immun ; 100: 29-47, 2022 02.
Article in English | MEDLINE | ID: mdl-34808288

ABSTRACT

Traumatic brain injury (TBI) is a major contributor to death and disability worldwide. Children are at particularly high risk of both sustaining a TBI and experiencing serious long-term consequences, such as cognitive deficits, mental health problems and post-traumatic epilepsy. Severe TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization post-TBI. Yet the potential chronic impact of such acute infections following pediatric TBI remains unclear. In this study, we hypothesized that a peripheral immune challenge, such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen inflammatory, neurobehavioral, and seizure outcomes after experimental pediatric TBI. To test this, three-week old male C57Bl/6J mice received a moderate controlled cortical impact or sham surgery, followed by 1 mg/kg i.p. LPS (or 0.9% saline vehicle) at 4 days TBI. Mice were randomized to four groups; sham-saline, sham-LPS, TBI-saline or TBI-LPS (n = 15/group). Reduced general activity and increased anxiety-like behavior were observed within 24 h in LPS-treated mice, indicating a transient sickness response. LPS-treated mice also exhibited a reduction in body weights, which persisted chronically. From 2 months post-injury, mice underwent a battery of tests for sensorimotor, cognitive, and psychosocial behaviors. TBI resulted in hyperactivity and spatial memory deficits, independent of LPS; whereas LPS resulted in subtle deficits in spatial memory retention. At 5 months post-injury, video-electroencephalographic recordings were obtained to evaluate both spontaneous seizure activity as well as the evoked seizure response to pentylenetetrazol (PTZ). TBI increased susceptibility to PTZ-evoked seizures; whereas LPS appeared to increase the incidence of spontaneous seizures. Post-mortem analyses found that TBI, but not LPS, resulted in robust glial reactivity and loss of cortical volume. A TBI × LPS interaction in hippocampal volume suggested that TBI-LPS mice had a subtle increase in ipsilateral hippocampus tissue loss; however, this was not reflected in neuronal cell counts. Both TBI and LPS independently had modest effects on chronic hippocampal gene expression. Together, contrary to our hypothesis, we observed minimal synergy between TBI and LPS. Instead, pediatric TBI and a subsequent transient immune challenge independently influenced chronic outcomes. These findings have implications for future preclinical modeling as well as acute post-injury patient management.


Subject(s)
Brain Injuries, Traumatic , Cognition Disorders , Animals , Male , Mice , Brain Injuries, Traumatic/metabolism , Cognition Disorders/complications , Disease Models, Animal , Mice, Inbred C57BL , Seizures/etiology , Spatial Memory
10.
Lab Invest ; 101(7): 851-864, 2021 07.
Article in English | MEDLINE | ID: mdl-33859334

ABSTRACT

Endothelial and epithelial cells form physical barriers that modulate the exchange of fluid and molecules. The integrity of these barriers can be influenced by signaling through G protein-coupled receptors (GPCRs) and ion channels. Serotonin (5-HT) is an important vasoactive mediator of tissue edema and inflammation. However, the mechanisms that drive 5-HT-induced plasma extravasation are poorly defined. The Transient Receptor Potential Vanilloid 4 (TRPV4) ion channel is an established enhancer of signaling by GPCRs that promote inflammation and endothelial barrier disruption. Here, we investigated the role of TRPV4 in 5-HT-induced plasma extravasation using pharmacological and genetic approaches. Activation of either TRPV4 or 5-HT receptors promoted significant plasma extravasation in the airway and upper gastrointestinal tract of mice. 5-HT-mediated extravasation was significantly reduced by pharmacological inhibition of the 5-HT2A receptor subtype, or with antagonism or deletion of TRPV4, consistent with functional interaction between 5-HT receptors and TRPV4. Inhibition of receptors for the neuropeptides substance P (SP) or calcitonin gene-related peptide (CGRP) diminished 5-HT-induced plasma extravasation. Supporting studies assessing treatment of HUVEC with 5-HT, CGRP, or SP was associated with ERK phosphorylation. Exposure to the TRPV4 activator GSK1016790A, but not 5-HT, increased intracellular Ca2+ in these cells. However, 5-HT pre-treatment enhanced GSK1016790A-mediated Ca2+ signaling, consistent with sensitization of TRPV4. The functional interaction was further characterized in HEK293 cells expressing 5-HT2A to reveal that TRPV4 enhances the duration of 5-HT-evoked Ca2+ signaling through a PLA2 and PKC-dependent mechanism. In summary, this study demonstrates that TRPV4 contributes to 5-HT2A-induced plasma extravasation in the airways and upper GI tract, with evidence supporting a mechanism of action involving SP and CGRP release.


Subject(s)
Capillary Permeability/drug effects , Lung/drug effects , Serotonin , TRPV Cation Channels , Upper Gastrointestinal Tract/drug effects , Animals , HEK293 Cells , Human Umbilical Vein Endothelial Cells , Humans , Lung/cytology , Lung/metabolism , Male , Mice , Mice, Inbred C57BL , Serotonin/genetics , Serotonin/metabolism , Serotonin/pharmacology , TRPV Cation Channels/genetics , TRPV Cation Channels/metabolism , Upper Gastrointestinal Tract/cytology , Upper Gastrointestinal Tract/metabolism
11.
J Neuroinflammation ; 18(1): 72, 2021 Mar 17.
Article in English | MEDLINE | ID: mdl-33731173

ABSTRACT

BACKGROUND: Traumatic brain injury (TBI) is a major cause of disability in young children, yet the factors contributing to poor outcomes in this population are not well understood. TBI patients are highly susceptible to nosocomial infections, which are mostly acquired within the first week of hospitalization, and such infections may modify TBI pathobiology and recovery. In this study, we hypothesized that a peripheral immune challenge such as lipopolysaccharide (LPS)-mimicking a hospital-acquired infection-would worsen outcomes after experimental pediatric TBI, by perpetuating the inflammatory immune response. METHODS: Three-week-old male mice received either a moderate controlled cortical impact or sham surgery, followed by a single LPS dose (1 mg/kg i.p.) or vehicle (0.9% saline) at 4 days post-surgery, then analysis at 5 or 8 days post-injury (i.e., 1 or 4 days post-LPS). RESULTS: LPS-treated mice exhibited a time-dependent reduction in general activity and social investigation, and increased anxiety, alongside substantial body weight loss, indicating transient sickness behaviors. Spleen-to-body weight ratios were also increased in LPS-treated mice, indicative of persistent activation of adaptive immunity at 4 days post-LPS. TBI + LPS mice showed an impaired trajectory of weight gain post-LPS, reflecting a synergistic effect of TBI and the LPS-induced immune challenge. Flow cytometry analysis demonstrated innate immune cell activation in blood, brain, and spleen post-LPS; however, this was not potentiated by TBI. Cytokine protein levels in serum, and gene expression levels in the brain, were altered in response to LPS but not TBI across the time course. Immunofluorescence analysis of brain sections revealed increased glia reactivity due to injury, but no additive effect of LPS was observed. CONCLUSIONS: Together, we found that a transient, infection-like systemic challenge had widespread effects on the brain and immune system, but these were not synergistic with prior TBI in pediatric mice. These findings provide novel insight into the potential influence of a secondary immune challenge to the injured pediatric brain, with future studies needed to elucidate the chronic effects of this two-hit insult.


Subject(s)
Brain Injuries, Traumatic/immunology , Brain Injuries, Traumatic/pathology , Cross Infection/immunology , Encephalitis/immunology , Encephalitis/pathology , Adaptive Immunity/immunology , Animals , Anxiety/etiology , Anxiety/psychology , Behavior, Animal , Brain Injuries, Traumatic/psychology , Cerebral Cortex/pathology , Disease Models, Animal , Encephalitis/psychology , Lipopolysaccharides/pharmacology , Male , Mice , Mice, Inbred C57BL , Motor Activity , Social Behavior , Weight Loss
12.
Exp Neurol ; 339: 113652, 2021 05.
Article in English | MEDLINE | ID: mdl-33609501

ABSTRACT

Young children have a high risk of sustaining a traumatic brain injury (TBI), which can have debilitating life-long consequences. Importantly, the young brain shows particular vulnerability to injury, likely attributed to ongoing maturation of the myelinating nervous system at the time of insult. Here, we examined the effect of acute treatment with the partial tropomyosin receptor kinase B (TrkB) agonist, LM22A-4, on pathological and neurobehavioral outcomes after pediatric TBI, with the hypothesis that targeting TrkB would minimize tissue damage and support functional recovery. We focused on myelinated tracts-the corpus callosum and external capsules-based on recent evidence that TrkB activation potentiates oligodendrocyte remyelination. Male mice at postnatal day 21 received an experimental TBI or sham surgery. Acutely post-injury, extensive cell death, a robust glial response and disruption of compact myelin were evident in the injured brain. TBI or sham mice then received intranasal saline vehicle or LM22A-4 for 14 days. Behavior testing was performed from 4 weeks post-injury, and brains were collected at 5 weeks for histology. TBI mice showed hyperactivity, reduced anxiety-like behavior, and social memory impairments. LM22A-4 ameliorated the abnormal anxiolytic phenotype but had no effect on social memory deficits. Use of spectral confocal reflectance microscopy detected persistent myelin fragmentation in the external capsule of TBI mice at 5 weeks post-injury, which was accompanied by regionally distinct deficits in oligodendrocyte progenitor cells and post-mitotic oligodendrocytes, as well as chronic reactive gliosis and atrophy of the corpus callosum and injured external capsule. LM22A-4 treatment ameliorated myelin deficits in the perilesional external capsule, as well as tissue volume loss and the extent of reactive gliosis. However, there was no effect of this TrkB agonist on oligodendroglial populations detected at 5 weeks post-injury. Collectively, our results demonstrate that targeting TrkB immediately after TBI during early life confers neuroprotection and preserves myelin integrity, and this was associated with some improved neurobehavioral outcomes as the pediatric injured brain matures.


Subject(s)
Benzamides/administration & dosage , Brain Injuries, Traumatic/prevention & control , Membrane Glycoproteins/agonists , Myelin Sheath/drug effects , Neuroprotection/drug effects , Remyelination/drug effects , Animals , Brain Injuries, Traumatic/metabolism , Brain Injuries, Traumatic/pathology , Disease Models, Animal , Drug Administration Schedule , Male , Mice , Mice, Inbred C57BL , Myelin Sheath/metabolism , Myelin Sheath/pathology , Neuroprotection/physiology , Protein-Tyrosine Kinases , Remyelination/physiology , Treatment Outcome
13.
Front Pharmacol ; 11: 2, 2020.
Article in English | MEDLINE | ID: mdl-32116690

ABSTRACT

The development of epilepsy, a process known as epileptogenesis, often occurs later in life following a prenatal or early postnatal insult such as cerebral ischemia, stroke, brain trauma, or infection. These insults share common pathophysiological pathways involving innate immune activation including neuroinflammation, which is proposed to play a critical role in epileptogenesis. This review provides a comprehensive overview of the latest preclinical evidence demonstrating that early life immune challenges influence neuronal hyperexcitability and predispose an individual to later life epilepsy. Here, we consider the range of brain insults that may promote the onset of chronic recurrent spontaneous seizures at adulthood, spanning intrauterine insults (e.g. maternal immune activation), perinatal injuries (e.g. hypoxic-ischemic injury, perinatal stroke), and insults sustained during early postnatal life-such as fever-induced febrile seizures, traumatic brain injuries, infections, and environmental stressors. Importantly, all of these insults represent, to some extent, an immune challenge, triggering innate immune activation and implicating both central and systemic inflammation as drivers of epileptogenesis. Increasing evidence suggests that pro-inflammatory cytokines such as interleukin-1 and subsequent signaling pathways are important mediators of seizure onset and recurrence, as well as neuronal network plasticity changes in this context. Our current understanding of how early life immune challenges prime microglia and astrocytes will be explored, as well as how developmental age is a critical determinant of seizure susceptibility. Finally, we will consider the paradoxical phenomenon of preconditioning, whereby these same insults may conversely provide neuroprotection. Together, an improved appreciation of the neuroinflammatory mechanisms underlying the long-term epilepsy risk following early life insults may provide insight into opportunities to develop novel immunological anti-epileptogenic therapeutic strategies.

14.
Brain Behav Immun Health ; 5: 100072, 2020 May.
Article in English | MEDLINE | ID: mdl-34589854

ABSTRACT

Systemic administration of human amnion epithelial cells (hAECs) was recently shown to reduce neuropathology and improve functional recovery following ischemic stroke in both mice and marmosets. Given the significant neuropathological overlap between ischemic stroke and traumatic brain injury (TBI), we hypothesized that a similar hAEC treatment regime would also improve TBI outcomes. Male mice (12 weeks old, n â€‹= â€‹40) were given a sham injury or moderate severity TBI by controlled cortical impact. At 60 â€‹min post-injury, mice were given a single tail vein injection of either saline (vehicle) or 1 â€‹× â€‹106 hAECs suspended in saline. At 24 â€‹h post-injury, mice were assessed for locomotion and anxiety using an open field, and sensorimotor ability using a rotarod. At 48 â€‹h post-injury, brains were collected for analysis of immune cells via flow cytometry, or histological evaluation of lesion volume and hAEC penetration. To assess the impact of TBI and hAECs on lymphoid organs, spleen and thymus weights were determined. Treatment with hAECs did not prevent TBI-induced sensorimotor deficits at 24 â€‹h post-injury. hAECs were detected in the injured brain parenchyma; however, lesion volume was not altered by hAEC treatment. Robust increases in several leukocyte populations in the ipsilateral hemisphere of TBI mice were found when compared to sham mice at 48 â€‹h post-injury; however, hAEC treatment did not alter brain immune cell numbers. Both TBI and hAEC treatment were found to increase spleen weight. Taken together, these findings indicate that-unlike in ischemic stroke-treatment with hAEC was unable to prevent immune cell infiltration and sensorimotor deficits in the acute stages following controlled cortical impact in mice. Although further investigations are required, our data suggests that the lack of hAEC-induced neuroprotection in the current study may be explained by the differential splenic contributions to neuropathology between these brain injury models.

15.
Exp Neurol ; 320: 112979, 2019 10.
Article in English | MEDLINE | ID: mdl-31229637

ABSTRACT

High mobility group box protein-1 (HMGB1) has been implicated as a key mediator of neuroinflammation and neurodegeneration in a range of neurological conditions including traumatic brain injury (TBI) and epilepsy. To date, however, most studies have examined only acute outcomes, and the adult brain. We have recently demonstrated HMGB1 release after experimental TBI in the pediatric mouse. This study therefore examined the chronic consequences of acute HMGB1 inhibition in the same model, to test the hypothesis that HMGB1 is a pivotal mediator of neuropathological, neurobehavioral, and epilepsy outcomes in pediatric TBI. HMGB1 was inhibited by treatment with 50 mg/kg i.p. Glycyrrhizin (Gly), compared to vehicle controls, commencing 1 h prior to moderate TBI or sham surgery in post-natal day 21 mice. We first demonstrated that Gly reduced brain HMGB1 levels and brain edema at an acute time point of 3 days post-injury. Subsequent analysis over a chronic time course found that pediatric TBI resulted in short-term spatial memory and motor learning deficits alongside an apparent increase in hippocampal microglial reactivity, which was prevented in Gly-treated TBI mice. In contrast, Gly treatment did not reduce the severity of evoked seizures, the proportion of animals exhibiting chronic spontaneous seizure activity, or cortical tissue loss. Together, our findings contribute to a growing appreciation for HMGB1's role in neuropathology and associated behavioral outcomes after TBI. However, further work is needed to fully elucidate the contribution of HMGB1 to epileptogenesis in this context.


Subject(s)
Brain Injuries, Traumatic/metabolism , HMGB1 Protein/metabolism , Animals , Anti-Inflammatory Agents/pharmacology , Brain Injuries, Traumatic/complications , Brain Injuries, Traumatic/pathology , Glycyrrhizic Acid/pharmacology , Male , Mice , Mice, Inbred C57BL , Seizures/etiology
SELECTION OF CITATIONS
SEARCH DETAIL
...