Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Phytopathology ; 113(8): 1399-1404, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36935380

ABSTRACT

Sporodochia are dense masses of fungal hyphae bearing asexual conidia. For Fusarium oxysporum, sporodochia are known to produce airborne conidia and enhance the dissemination of this otherwise soilborne pathogen. Sporodochia are small and transient, and they are documented for only a few formae speciales of F. oxysporum. This study reports airborne conidia and sporodochia produced by F. oxysporum f. sp. fragariae, the cause of Fusarium wilt of strawberry, in the Monterey Bay region of California. Sporodochia were discovered in 21 of 24 Fusarium wilt-diseased fields surveyed for this study and were readily observed on most symptomatic plants in these fields. Only necrotic tissues bore sporodochia, and they were most frequently observed on petioles and peduncles. Sporodochia covered significantly greater lengths of peduncles than petioles, extending from the base of the plant toward the upper part of the canopy. A stolon hosted the longest stretch of sporodochial growth, found covering the stolon's entire 35-cm length and the base of the daughter plant. Macroconidia were produced by all sporodochia samples, and we did not find microconidia on any samples. An initial series of experiments confirmed the potential for conidia produced by sporodochia to disperse with wind over short distances. The prevalence of sporodochia producing airborne spores of F. oxysporum f. sp. fragariae has great importance for disease management and biosecurity. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.

2.
Rice (N Y) ; 10(1): 40, 2017 Aug 30.
Article in English | MEDLINE | ID: mdl-28856618

ABSTRACT

BACKGROUND: Fixed arrays of single nucleotide polymorphism (SNP) markers have advantages over reduced representation sequencing in their ease of data analysis, consistently higher call rates, and rapid turnaround times. A 6 K SNP array represents a cost-benefit "sweet spot" for routine genetics and breeding applications in rice. Selection of informative SNPs across species and subpopulations during chip design is essential to obtain useful polymorphism rates for target germplasm groups. This paper summarizes results from large-scale deployment of an Illumina 6 K SNP array for rice. RESULTS: Design of the Illumina Infinium 6 K SNP chip for rice, referred to as the Cornell_6K_Array_Infinium_Rice (C6AIR), includes 4429 SNPs from re-sequencing data and 1571 SNP markers from previous BeadXpress 384-SNP sets, selected based on polymorphism rate and allele frequency within and between target germplasm groups. Of the 6000 attempted bead types, 5274 passed Illumina's production quality control. The C6AIR was widely deployed at the International Rice Research Institute (IRRI) for genetic diversity analysis, QTL mapping, and tracking introgressions and was intensively used at Cornell University for QTL analysis and developing libraries of interspecific chromosome segment substitution lines (CSSLs) between O. sativa and diverse accessions of O. rufipogon or O. meridionalis. Collectively, the array was used to genotype over 40,000 rice samples. A set of 4606 SNP markers was used to provide high quality data for O. sativa germplasm, while a slightly expanded set of 4940 SNPs was used for O. sativa X O. rufipogon populations. Biparental polymorphism rates were generally between 1900 and 2500 well-distributed SNP markers for indica x japonica or interspecific populations and between 1300 and 1500 markers for crosses within indica, while polymorphism rates were lower for pairwise crosses within U.S. tropical japonica germplasm. Recently, a second-generation array containing ~7000 SNP markers, referred to as the C7AIR, was designed by removing poor-performing SNPs from the C6AIR and adding markers selected to increase the utility of the array for elite tropical japonica material. CONCLUSIONS: The C6AIR has been successfully used to generate rapid and high-quality genotype data for diverse genetics and breeding applications in rice, and provides the basis for an optimized design in the C7AIR.

SELECTION OF CITATIONS
SEARCH DETAIL
...