Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancers (Basel) ; 14(14)2022 Jul 08.
Article in English | MEDLINE | ID: mdl-35884396

ABSTRACT

O-(2-[18F]fluoroethyl)-L-tyrosine (FET) is a widely used amino acid tracer for positron emission tomography (PET) imaging of brain tumours. This retrospective study and survey aimed to analyse our extensive database regarding the development of FET PET investigations, indications, and the referring physicians' rating concerning the role of FET PET in the clinical decision-making process. Between 2006 and 2019, we performed 6534 FET PET scans on 3928 different patients against a backdrop of growing demand for FET PET. In 2019, indications for the use of FET PET were as follows: suspected recurrent glioma (46%), unclear brain lesions (20%), treatment monitoring (19%), and suspected recurrent brain metastasis (13%). The referring physicians were neurosurgeons (60%), neurologists (19%), radiation oncologists (11%), general oncologists (3%), and other physicians (7%). Most patients travelled 50 to 75 km, but 9% travelled more than 200 km. The role of FET PET in decision-making in clinical practice was evaluated by a questionnaire consisting of 30 questions, which was filled out by 23 referring physicians with long experience in FET PET. Fifty to seventy per cent rated FET PET as being important for different aspects of the assessment of newly diagnosed gliomas, including differential diagnosis, delineation of tumour extent for biopsy guidance, and treatment planning such as surgery or radiotherapy, 95% for the diagnosis of recurrent glioma, and 68% for the diagnosis of recurrent brain metastases. Approximately 50% of the referring physicians rated FET PET as necessary for treatment monitoring in patients with glioma or brain metastases. All referring physicians stated that the availability of FET PET is essential and that it should be approved for routine use. Although the present analysis is limited by the fact that only physicians who frequently referred patients for FET PET participated in the survey, the results confirm the high relevance of FET PET in the clinical diagnosis of brain tumours and support the need for its approval for routine use.

2.
Neurobiol Aging ; 105: 159-173, 2021 09.
Article in English | MEDLINE | ID: mdl-34090179

ABSTRACT

The neural correlates of subjective cognitive decline (SCD; i.e., without objectifiable deficit) remain to be elucidated. Possible causes of SCD include early neurodegeneration related to Alzheimer's disease or functional and structural changes related to sub-clinical depression. We investigated the relationship between episodic memory performance or memory complaints and structural or functional magnetic resonance imaging (MRI) measures in participants with SCD (n=18) but without psychiatric disorders and healthy controls (n=31). In SCD, memory complaints were not associated with memory performance but with sub-clinical depression and executive functions. SCD-associated memory complaints correlated with higher amygdala and parahippocampal gyrus (specifically subiculum) gray matter density. In controls, but not in SCD, mesiotemporal gray matter density and superior frontal gyrus functional connectivity predicted memory performance. In contrast, in SCD, only a trend toward a correlation between memory performance and gray matter density in the parietooccipital lobes was observed. In our memory-clinic sample of SCD, we did not observe incipient neurodegeneration (limited to structural and functional MRI) but rather sub-clinical depression underlying subjective cognitive complaints.


Subject(s)
Cognitive Dysfunction/pathology , Cognitive Dysfunction/psychology , Executive Function , Healthy Volunteers/psychology , Hippocampus/pathology , Memory, Episodic , Temporal Lobe/pathology , Aged , Cognitive Dysfunction/diagnostic imaging , Female , Hippocampus/diagnostic imaging , Hippocampus/physiology , Hippocampus/physiopathology , Humans , Male , Middle Aged , Temporal Lobe/diagnostic imaging , Temporal Lobe/physiology , Temporal Lobe/physiopathology
3.
J Alzheimers Dis ; 59(1): 169-187, 2017.
Article in English | MEDLINE | ID: mdl-28598839

ABSTRACT

Neurodegenerative brain changes can affect the functional connectivity strength between nodes of the default-mode network (DMN), which may underlie changes in cognitive performance. It remains unclear how the functional connectivity strength of DMN nodes differs from healthy to pathological aging and whether these changes are cognitively relevant. We used resting-state functional magnetic resonance imaging to investigate the functional connectivity strength across five DMN nodes in 25 healthy controls (HC), 28 subjective cognitive decline (SCD) participants, and 25 prodromal Alzheimer's disease (AD) patients. After identifying the ventral medial prefrontal cortex (vmPFC), posterior cingulate cortex (PCC), retrosplenial cortex (RSC), inferior parietal lobule, and the hippocampus we investigated the functional strength between DMN nodes using temporal network modeling. Functional coupling of the vmPFC and PCC in prodromal AD patients was disrupted. This vmPFC-PCC coupling correlated positively with memory performance in prodromal AD. Furthermore, the hippocampus de-coupled from posterior DMN nodes in SCD and prodromal AD patients. There was no coupling between the hippocampus and the anterior DMN. Additional mediation analyses indicated that the RSC enables communication between the hippocampus and DMN regions in HC but none of the other two groups. These results suggest an anterior-posterior disconnection and a hippocampal de-coupling from posterior DMN nodes with disease progression. Hippocampal de-coupling already occurring in SCD may provide valuable information for the development of a functional biomarker.


Subject(s)
Alzheimer Disease/diagnostic imaging , Alzheimer Disease/physiopathology , Cognition Disorders/diagnostic imaging , Models, Neurological , Neural Pathways/diagnostic imaging , Aged , Analysis of Variance , Female , Fluorodeoxyglucose F18 , Functional Laterality , Humans , Image Processing, Computer-Assisted , Magnetic Resonance Imaging , Male , Middle Aged , Neuropsychological Tests , Oxygen/blood , Positron-Emission Tomography , Prodromal Symptoms , Psychiatric Status Rating Scales , Surveys and Questionnaires
4.
Neurobiol Aging ; 44: 114-126, 2016 08.
Article in English | MEDLINE | ID: mdl-27318139

ABSTRACT

The posterior cingulate cortex (PCC) is a key hub of the default mode network, a resting-state network involved in episodic memory, showing functional connectivity (FC) changes in Alzheimer's disease (AD). However, PCC is a cytoarchitectonically heterogeneous region. Specifically, the retrosplenial cortex (RSC), often subsumed under the PCC, is an area functionally and microanatomically distinct from PCC. To investigate FC patterns of RSC and PCC separately, we used resting-state functional magnetic resonance imaging in healthy aging participants, patients with subjective cognitive impairment, and prodromal AD. Compared to the other 2 groups, we found higher FC from RSC to frontal cortex in subjective cognitive impairment but higher FC to occipital cortex in prodromal AD. Conversely, FC from PCC to the lingual gyrus was higher in prodromal AD. Furthermore, data indicate that RSC and PCC are characterized by differential FC patterns represented by hub-specific interactions with memory and attentions scores in prodromal AD compared to cognitively normal individuals, possibly reflecting compensatory mechanisms for RSC and neurodegenerative processes for PCC. Data thus confirm and extend previous studies suggesting that the RSC is functionally distinct from PCC.


Subject(s)
Alzheimer Disease/physiopathology , Alzheimer Disease/psychology , Cerebral Cortex/physiopathology , Gyrus Cinguli/physiopathology , Nerve Net/physiopathology , Aged , Alzheimer Disease/diagnostic imaging , Alzheimer Disease/pathology , Attention , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/pathology , Cognitive Dysfunction/diagnostic imaging , Cognitive Dysfunction/pathology , Cognitive Dysfunction/physiopathology , Cognitive Dysfunction/psychology , Female , Functional Neuroimaging , Gyrus Cinguli/diagnostic imaging , Gyrus Cinguli/pathology , Humans , Magnetic Resonance Imaging , Male , Memory, Episodic , Middle Aged , Nerve Net/diagnostic imaging , Nerve Net/pathology
5.
Schizophr Res ; 175(1-3): 4-11, 2016 08.
Article in English | MEDLINE | ID: mdl-27161760

ABSTRACT

OBJECTIVE: Young adults with early phase schizophrenia often report a past or current pattern of illicit substance use and/or alcohol misuse. Still, little is known about the cumulative and separate effects of each stressor on white matter tissue, at this vulnerable period of brain development. METHODS: Participants involved 24 healthy controls with a past or current history of sustained illicit drug use and/or alcohol misuse (users), 23 healthy controls without such history (normative data), and 27 users with early phase schizophrenia. (1)H-MRS data were acquired from a large frontal volume encompassing 95% of white matter, using a 4Tesla scanner (LASER sequence, TR/TE 3200/46ms). RESULTS: Reduced levels of choline-containing compounds (Cho) were specific to the effect of illness (Cohen's d=0.68), with 22% of the variance in Cho levels accounted for by duration of illness. Reduced levels of myoInositol (d=1.10) and creatine plus phosphocreatine (d=1.07) were specific to the effects of illness plus substance use. Effect of substance use on its own was revealed by reductions in levels of glutamate plus glutamine (d=0.83) in control users relative to normative data. CONCLUSIONS: The specific effect of illness on white matter might indicate a decreased synthesis of membrane phospholipids or alternatively, reduced membrane cellular density. In terms of limitations, this study did not include patients without a lifetime history of substance use (non-users), and the specific effect of each substance used could not be studied separately.


Subject(s)
Frontal Lobe/metabolism , Schizophrenia/metabolism , Substance-Related Disorders/metabolism , White Matter/metabolism , Adult , Female , Frontal Lobe/diagnostic imaging , Humans , Male , Multivariate Analysis , Phospholipids/metabolism , Proton Magnetic Resonance Spectroscopy , Psychiatric Status Rating Scales , Schizophrenia/diagnostic imaging , Substance-Related Disorders/diagnostic imaging , White Matter/diagnostic imaging , Young Adult
6.
Front Aging Neurosci ; 6: 344, 2014.
Article in English | MEDLINE | ID: mdl-25620930

ABSTRACT

Memory encoding and retrieval problems are inherent to aging. To date, however, the effect of aging upon the neural correlates of forming memory traces remains poorly understood. Resting-state fMRI connectivity can be used to investigate initial consolidation. We compared within and between network connectivity differences between healthy young and older participants before encoding, after encoding and before retrieval by means of resting-state fMRI. Alterations over time in the between-network connectivity analyses correlated with retrieval performance, whereas within-network connectivity did not: a higher level of negative coupling or competition between the default mode and the executive networks during the after encoding condition was associated with increased retrieval performance in the older adults, but not in the young group. Data suggest that the effective formation of memory traces depends on an age-dependent, dynamic reorganization of the interaction between multiple, large-scale functional networks. Our findings demonstrate that a cross-network based approach can further the understanding of the neural underpinnings of aging-associated memory decline.

7.
PLoS One ; 8(3): e58130, 2013.
Article in English | MEDLINE | ID: mdl-23483983

ABSTRACT

Functional magnetic resonance imaging (fMRI) activation in white matter is controversial. Given that many of the studies that report fMRI activation in white matter used high field MRI systems, we investigated the field strength dependence of sensitivity to white matter fMRI activation. In addition, we evaluated the temporal signal to noise ratio (tSNR) of the different tissue types as a function of field strength. Data were acquired during a motor task (finger tapping) at 1.5 T and 4 T. Group and individual level activation results were considered in both the sensorimotor cortex and the posterior limb of the internal capsule. We found that sensitivity increases associated with field strength were greater for white matter than gray matter. The analysis of tSNR suggested that white matter might be less susceptible to increases in physiological noise related to increased field strength. We therefore conclude that high field MRI may be particularly advantageous for fMRI studies aimed at investigating activation in both gray and white matter.


Subject(s)
Fingers/physiology , Magnetic Resonance Imaging/methods , Motor Activity/physiology , Motor Cortex/physiology , Nerve Fibers, Myelinated/physiology , Adult , Brain Mapping , Female , Humans , Image Processing, Computer-Assisted , Magnetic Fields , Male , Signal-To-Noise Ratio
SELECTION OF CITATIONS
SEARCH DETAIL
...