Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Anal Chem ; 95(16): 6595-6602, 2023 Apr 25.
Article in English | MEDLINE | ID: mdl-37042833

ABSTRACT

This study focuses on the dependence of nonlinear electrophoretic migration of particles on the particle size and particle electrical charge. This is the first report of the experimental assessment of the mobilities of the nonlinear electrophoretic velocity of colloidal polystyrene microparticles under two distinct electric field dependences. A total of nine distinct types of polystyrene microparticles of varying size and varying electrical charge were divided into two groups to study separately the effects of particle size and the effects of particle charge. The mobilities of the nonlinear electrophoretic velocity of each particle type were determined in both the cubic and 3/2 regimes (µEP,NL(3) and µEP,NL(3/2)). The results unveiled that both mobilities had similar relationships with particle size and charge. The magnitude of both µEP,NL(3) and µEP,NL(3/2) increased with increasing particle size and decreased with increasing magnitude of particle charge. However, the observed trends were not perfect as discussed in the Results and Discussion section but still provide valuable information. These findings will aid in the design of future size-based and charge-based separations of particles and microorganisms.

2.
Anal Chem ; 94(17): 6451-6456, 2022 05 03.
Article in English | MEDLINE | ID: mdl-35441512

ABSTRACT

Well-established techniques, e.g., chromatography and capillary electrophoresis, are available for separating nanosized particles, such as proteins. However, similar techniques for separating micron-sized particles are still needed. Insulator-based electrokinetic (iEK) systems can achieve efficient microparticle separations by combining linear and nonlinear EK phenomena. Of particular interest are charge-based separations, which could be employed for separating similar microorganisms, such as bacterial cells of the same size, same genus, or same strain. Several groups have reported charge-based separations of microparticles where a zeta potential difference of at least 40 mV between the microparticles was required. The present work pushes the limit of the discriminatory capabilities of iEK systems by reporting the charged-based separation of two microparticles of the same size (5.1 µm), same shape, same substrate material, and with a small difference in particle zeta potentials of only 3.6 mV, which is less than 10% of the difference in previous studies. By building an accurate COMSOL Multiphysics model, which correctly accounts for dielectrophoresis and electrophoresis of the second kind, it was possible to identify the conditions to achieve this challenging separation. Furthermore, the COMSOL model allowed predicting particle retention times (tR,p) which were compared with experimental values (tR,e). The separations results had excellent reproducibility in terms of tR,e with variations of only 9% and 11% between repetitions. These findings demonstrate that, by following a robust protocol that involves modeling and experimental work, it is possible to discriminate between highly similar particles, with much smaller differences in electrical charge than previously reported.


Subject(s)
Electricity , Polystyrenes , Electrophoresis/methods , Polystyrenes/chemistry , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...