Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 8(23): e2103266, 2021 12.
Article in English | MEDLINE | ID: mdl-34687279

ABSTRACT

Activation of endothelial cells following severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection is thought to be the primary driver for the increasingly recognized thrombotic complications in coronavirus disease 2019 patients, potentially due to the SARS-CoV-2 Spike protein binding to the human angiotensin-converting enzyme 2 (hACE2). Vaccination therapies use the same Spike sequence or protein to boost host immune response as a protective mechanism against SARS-CoV-2 infection. As a result, cases of thrombotic events are reported following vaccination. Although vaccines are generally considered safe, due to genetic heterogeneity, age, or the presence of comorbidities in the population worldwide, the prediction of severe adverse outcome in patients remains a challenge. To elucidate Spike proteins underlying patient-specific-vascular thrombosis, the human microcirculation environment is recapitulated using a novel microfluidic platform coated with human endothelial cells and exposed to patient specific whole blood. Here, the blood coagulation effect is tested after exposure to Spike protein in nanoparticles and Spike variant D614G in viral vectors and the results are corroborated using live SARS-CoV-2. Of note, two potential strategies are also examined to reduce blood clot formation, by using nanoliposome-hACE2 and anti-Interleukin (IL) 6 antibodies.


Subject(s)
Blood Coagulation/physiology , SARS-CoV-2/isolation & purification , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/genetics , Angiotensin-Converting Enzyme 2/metabolism , Antibodies/chemistry , Antibodies/immunology , Antibodies/metabolism , COVID-19/diagnosis , COVID-19/virology , Endothelial Cells/chemistry , Endothelial Cells/cytology , Endothelial Cells/metabolism , Fibrin/chemistry , Fibrin/metabolism , Genetic Vectors/genetics , Genetic Vectors/metabolism , Humans , Interleukin-6/immunology , Liposomes/chemistry , Microfluidics/methods , Mutation , Nanoparticles/chemistry , Platelet Aggregation , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/analysis , Spike Glycoprotein, Coronavirus/genetics
2.
Blood ; 130(3): 245-257, 2017 07 20.
Article in English | MEDLINE | ID: mdl-28465342

ABSTRACT

The iron-regulatory hormone hepcidin is induced early in infection, causing iron sequestration in macrophages and decreased plasma iron; this is proposed to limit the replication of extracellular microbes, but could also promote infection with macrophage-tropic pathogens. The mechanisms by which hepcidin and hypoferremia modulate host defense, and the spectrum of microbes affected, are poorly understood. Using mouse models, we show that hepcidin was selectively protective against siderophilic extracellular pathogens (Yersinia enterocolitica O9) by controlling non-transferrin-bound iron (NTBI) rather than iron-transferrin concentration. NTBI promoted the rapid growth of siderophilic but not nonsiderophilic bacteria in mice with either genetic or iatrogenic iron overload and in human plasma. Hepcidin or iron loading did not affect other key components of innate immunity, did not indiscriminately promote intracellular infections (Mycobacterium tuberculosis), and had no effect on extracellular nonsiderophilic Y enterocolitica O8 or Staphylococcus aureus Hepcidin analogs may be useful for treatment of siderophilic infections.


Subject(s)
Catheter-Related Infections/immunology , Hemochromatosis/immunology , Hepcidins/immunology , Iron Overload/immunology , Iron/metabolism , Staphylococcal Infections/immunology , Animals , Binding, Competitive , Catheter-Related Infections/metabolism , Catheter-Related Infections/microbiology , Catheter-Related Infections/mortality , Disease Models, Animal , Disease Resistance , Gene Expression , Hemochromatosis/metabolism , Hemochromatosis/microbiology , Hemochromatosis/mortality , Hepcidins/agonists , Hepcidins/deficiency , Hepcidins/genetics , Humans , Iron/immunology , Iron Overload/metabolism , Iron Overload/microbiology , Iron Overload/mortality , Mice , Mice, Inbred C57BL , Mice, Knockout , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Oligopeptides/pharmacology , Protein Binding , Staphylococcal Infections/metabolism , Staphylococcal Infections/microbiology , Staphylococcal Infections/mortality , Staphylococcus aureus , Survival Analysis , Transferrin/genetics , Transferrin/metabolism , Yersinia enterocolitica/drug effects , Yersinia enterocolitica/growth & development , Yersinia enterocolitica/metabolism
3.
Infect Immun ; 76(11): 5200-14, 2008 Nov.
Article in English | MEDLINE | ID: mdl-18725418

ABSTRACT

Tuberculosis is the leading cause of death in AIDS patients, yet the current tuberculosis vaccine, Mycobacterium bovis bacillus Calmette-Guérin (BCG), is contraindicated for immunocompromised individuals, including human immunodeficiency virus-positive persons, because it can cause disseminated disease; moreover, its efficacy is suboptimal. To address these problems, we have engineered BCG mutants that grow normally in vitro in the presence of a supplement, are preloadable with supplement to allow limited growth in vivo, and express the highly immunoprotective Mycobacterium tuberculosis 30-kDa major secretory protein. The limited replication in vivo renders these vaccines safer than BCG in SCID mice yet is sufficient to induce potent cell-mediated and protective immunity in the outbred guinea pig model of pulmonary tuberculosis. In the case of one vaccine, rBCG(mbtB)30, protection was superior to that with BCG (0.3-log fewer CFU of M. tuberculosis in the lung [P < 0.04] and 0.6-log fewer CFU in the spleen [P = 0.001] in aerosol-challenged animals [means for three experiments]); hence, rBCG(mbtB)30 is the first live mycobacterial vaccine that is both more attenuated than BCG in the SCID mouse and more potent than BCG in the guinea pig. Our study demonstrates the feasibility of developing safer and more potent vaccines against tuberculosis. The novel approach of engineering a replication-limited vaccine expressing a recombinant immunoprotective antigen and preloading it with a required nutrient, such as iron, that is capable of being stored should be generally applicable to other live vaccine vectors targeting intracellular pathogens.


Subject(s)
BCG Vaccine/immunology , HIV Infections/complications , Mycobacterium bovis/physiology , Tuberculosis/prevention & control , Vaccines, Attenuated/immunology , Vaccines, Synthetic/immunology , Animals , Antigens, Bacterial/immunology , Blotting, Southern , Guinea Pigs , Humans , Macrophages/microbiology , Mice , Mice, SCID , Mycobacterium bovis/pathogenicity , Tuberculosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL
...