Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 102(5): 4464-4475, 2019 May.
Article in English | MEDLINE | ID: mdl-30879827

ABSTRACT

The objective of this study was to assess the effect of treating cows with teat sealant only compared with antibiotic plus teat sealant at drying off on weekly somatic cell count, potential intramammary infection, and milk production across the entire subsequent lactation. In 3 research herds in the south of Ireland, cows with SCC that did not exceed 200,000 cells/mL in the previous lactation (LowSCC) were randomly assigned to 1 of 2 treatments at drying off: internal teat sealant alone (ITS) or antibiotic plus teat sealant (AB+ITS). Cows with SCC that exceeded 200,000 cells/mL in the previous lactation were treated with AB+ITS and included in the analyses as a separate group (HighSCC). Weekly individual animal composite SCC records were available for 654 cow lactations and were transformed to somatic cell scores (SCS) for the purpose of analysis. Data were divided into 3 data sets to represent records obtained (1) up to 35 DIM, (2) up to 120 DIM, and (3) across the lactation. Foremilk secretions were taken from all quarters at drying off, at calving, 2 wk after calving, and in mid-lactation and were cultured to detect the presence of bacteria. The LowSCC cows treated with ITS alone had higher daily milk yield (0.67 kg/d) across lactation compared with LowSCC cows treated with AB+ITS. The LowSCC cows treated with ITS alone had higher SCS in early, up to mid, and across lactation compared with LowSCC cows treated with AB+ITS. We detected no difference in weekly SCS of LowSCC cows treated with ITS alone and SCS of HighSCC cows. The least squares means back-transformed SCC across lactation of the LowSCC cows treated with ITS alone, LowSCC cows treated with AB+ITS, and HighSCC cows were 41,523, 34,001, and 38,939 cells/mL respectively. The odds of LowSCC cows treated with ITS alone having bacteria present in their foremilk across lactation was 2.7 (95% confidence interval: 1.91 to 3.85) and 1.6 (1.22 to 2.03) times the odds of LowSCC cows treated with AB+ITS and of HighSCC cows treated with AB+ITS, respectively. In this study, Staphylococcus aureus was the most prevalent pathogen isolated from the population. Recategorizing the threshold for LowSCC cows as ≤150,000 cells/mL or ≤100,000 cells/mL in the previous lactation had no effect on the results. The results indicate that herds with good mastitis control programs may use ITS alone at dry-off in cows with SCC <200,000 cells/mL across lactation with only a small effect on herd SCC.


Subject(s)
Anti-Bacterial Agents , Cattle , Cephalosporins , Dairying , Lactation , Mammary Glands, Animal , Tissue Adhesives , Animals , Cattle/physiology , Female , Anti-Bacterial Agents/therapeutic use , Cattle Diseases/therapy , Cell Count/veterinary , Cephalosporins/therapeutic use , Dairying/instrumentation , Dairying/methods , Ireland , Lactation/drug effects , Mammary Glands, Animal/drug effects , Mammary Glands, Animal/physiology , Milk/metabolism , Random Allocation , Tissue Adhesives/therapeutic use
2.
Animal ; 12(s2): s350-s362, 2018 Dec.
Article in English | MEDLINE | ID: mdl-30419980

ABSTRACT

Although food from grazed animals is increasingly sought by consumers because of perceived animal welfare advantages, grazing systems provide the farmer and the animal with unique challenges. The system is dependent almost daily on the climate for feed supply, with the importation of large amounts of feed from off farm, and associated labour and mechanisation costs, sometimes reducing economic viability. Furthermore, the cow may have to walk long distances and be able to harvest feed efficiently in a highly competitive environment because of the need for high levels of pasture utilisation. She must, also, be: (1) highly fertile, with a requirement for pregnancy within ~80 days post-calving; (2) 'easy care', because of the need for the management of large herds with limited labour; (3) able to walk long distances; and (4) robust to changes in feed supply and quality, so that short-term nutritional insults do not unduly influence her production and reproduction cycles. These are very different and are in addition to demands placed on cows in housed systems offered pre-made mixed rations. Furthermore, additional demands in environmental sustainability and animal welfare, in conjunction with the need for greater system-level biological efficiency (i.e. 'sustainable intensification'), will add to the 'robustness' requirements of cows in the future. Increasingly, there is evidence that certain genotypes of cows perform better or worse in grazing systems, indicating a genotype×environment interaction. This has led to the development of tailored breeding objectives within countries for important heritable traits to maximise the profitability and sustainability of their production system. To date, these breeding objectives have focussed on the more easily measured traits and those of highest relative economic importance. In the future, there will be greater emphasis on more difficult to measure traits that are important to the quality of life of the animal in each production system and to reduce the system's environmental footprint.


Subject(s)
Animal Welfare , Cattle/physiology , Fertility , Milk/metabolism , Poaceae , Reproduction , Animal Feed , Animals , Breeding , Cattle/genetics , Dairying , Farms , Female , Genotype , Lactation , Phenotype , Pregnancy , Quality of Life
3.
J Dairy Sci ; 100(12): 10189-10233, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29153162

ABSTRACT

From 1917 to 2017, dairy grazing systems have evolved from uncontrolled grazing of unimproved pastures by dual-purpose dairy-beef breeds to an intensive system with a high output per unit of land from a fit-for-purpose cow. The end of World War I signaled significant government investments in agricultural research institutes around the world, which coincided with technological breakthroughs in milk harvesting and a recognition that important traits in both plants and animals could be improved upon relatively rapidly through genetic selection. Uptake of milk recording and herd testing increased rapidly through the 1920s, as did the recognition that pastures that were rested in between grazing events yielded more in a year than those continuously grazed. This, and the invention and refinement of the electric fence, led to the development of "controlled" rotational grazing. This, in itself, facilitated greater stocking rates and a 5 to 10% increase in milk output per hectare but, perhaps more importantly, it allowed a more efficient use of nitrogen fertilizer, further increasing milk output/land area by 20%. Farmer inventions led to the development of the herringbone and rotary milking parlors, which, along with the "unshortable" electric fence and technological breakthroughs in sperm dilution rates, allowed further dairy farm expansion. Simple but effective technological breakthroughs in reproduction ensured that cows were identified in estrus early (a key factor in maintaining the seasonality of milk production) and enabled researchers to quantify the anestrus problem in grazing herds. Genetic improvement of pasture species has lagged its bovine counterpart, but recent developments in multi-trait indices as well as investment in genetic technologies should significantly increase potential milk production per hectare. Decades of research on the use of feeds other than pasture (i.e., supplementary feeds) have provided consistent milk production responses when the reduction in pasture intake associated with the provision of supplementary feed (i.e., substitution rate) is accounted for. A unique feature of grazing systems research over the last 70 yr has been the use of multi-year farm systems experimentation. These studies have allowed the evaluation of strategic changes to a component of the system on all the interacting features of the system. This technique has allowed excellent component research to be "systemized" and is an essential part of the development of the intensive grazing production system that exists today. Future challenges include the provision of skilled labor or specifically designed automation to optimize farm management and both environmental sustainability and animal welfare concerns, particularly relating to the concentration of nitrogen in each urine patch and the associated risk of nitrate leaching, as well as concerns regarding exposure of animals to harsh climatic conditions. These combined challenges could affect farmers' "social license" to farm in the future.


Subject(s)
Cattle , Dairying/methods , Dairying/trends , Animal Nutritional Physiological Phenomena , Animals , Female , Lactation , Milk
4.
Vet J ; 197(2): 259-67, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23276712

ABSTRACT

Dairy farms in Ireland are expanding in preparation for a new era of unrestricted milk production with the elimination of the European Union (EU) production quotas in 2015. Countries experiencing a changing agricultural demographic, including farm expansion, can benefit from documenting the implementation of on-farm biosecurity. The objectives of this study were to document and describe influences on biosecurity practices and related opinions on dairy farms. A representative response rate of 64% was achieved to a nationwide telesurvey of farmers. A 20% discrepancy was found between self-declared and truly 'closed' herds indicating a lack of understanding of the closed herd concept. Although >72% of farmers surveyed considered biosecurity to be important, 53% stated that a lack of information might prevent them from improving their biosecurity. Logistic regression highlighted regional, age, and farm-size related differences in biosecurity practices and opinions towards its implementation. Farmers in the most dairy cattle dense region were three times more likely to quarantine purchased stock than were their equivalents in regions where dairy production was less intense (P=0.012). Younger farmers in general were over twice as likely as middle-aged farmers to implement biosecurity guidelines (P=0.026). The owners of large enterprises were almost five times more likely to join a voluntary animal health scheme (P=0.003), and were over three times more likely to pay a premium price for health accredited animals (P=0.02) than were those farming small holdings. The baseline data recorded in this survey will form the basis for more detailed sociological and demographic research which will facilitate the targeting of future training of the farming community in biosecurity.


Subject(s)
Animal Husbandry/methods , Cattle Diseases/prevention & control , Adult , Aged , Aged, 80 and over , Animals , Cattle , Cattle Diseases/epidemiology , Data Collection , Humans , Ireland/epidemiology , Middle Aged , Odds Ratio , Surveys and Questionnaires , Vaccines/administration & dosage , Vaccines/immunology
5.
J Dairy Sci ; 87(9): 3076-9, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15375071

ABSTRACT

Scoring body condition and assessing changes in the body condition of dairy cattle have become strategic tools in both farm management and research. Consequently, body condition score (BCS) is being researched extensively throughout the world. However, international sharing, comparing, and use of data generated are limited because different BCS systems exist. In the United States and Ireland a 5-point BCS system is used for dairy cows, whereas Australia and New Zealand use 8- and 10-point scales, respectively. The New Zealand 10-point scale was compared with the scoring systems in the United States, Ireland, and Australia by trained assessors. Cows were assessed visually in the United States and Australia, and in Ireland, cows were assessed by palpating key areas of the cow's body (n = 154, 110, and 120, respectively). Data were analyzed by regression. Significant positive linear relationships were found between the New Zealand 10-point scale and the other scoring systems: US 5-point scale, r(2) = 0.54; Irish 5-point scale, r(2) = 0.72; and Australian 8-point scale, r(2) = 0.61. Those relationships must be interpreted cautiously because respective BCS within a given country were by just one experienced evaluator in each country in comparison to a separate evaluator scoring all cows in all counties using the New Zealand 10-point scale. Also, few very thin or very fat cows limit evaluation across extremes of BCS. However, differences between systems were not accurately predicted by simple mathematical calculations. The relationship may be closer for New Zealand and Ireland (r(2) = 0.72) because both of those scoring systems include palpation of individual body parts, whereas visual evaluation is done in Australia and the United States. The current study is the first to examine relationships among differing BCS systems. These results may be useful for comparing/extrapolating research findings from different countries.


Subject(s)
Body Composition , Cattle , Adipose Tissue , Animals , Australia , Female , Ireland , New Zealand , Palpation , United States
6.
Anim Reprod Sci ; 65(1-2): 17-31, 2001 Jan 31.
Article in English | MEDLINE | ID: mdl-11182505

ABSTRACT

The effect of genetic merit for milk production traits - fat, protein and milk yield - in dairy cows on milk production, body condition, blood metabolites, reproductive hormones, feed intake and reproductive performance was studied over a period of 2 years. Cows were grouped into two categories, based on calculated pedigree indices using multiple-trait across country evaluation (MACE). Cows of high genetic merit (HGM, n = 48 in year 1 and n = 46 in year 2) had a mean predicted difference +/- standard deviation for milk production of 475 +/- 76kg. The cows of medium genetic merit (MGM, n = 48 in both years) had a mean predicted difference for milk production of 140 +/- 68kg. The cows calved between January and April, and were offered grass silage ad libitum plus 9kg concentrates per cow per day, irrespective genetic merit, from calving to turnout in March, when they were subjected to one of three grazing systems. Cows were available for rebreeding from late April until late July of each year.High genetic merit cows had higher milk production, incurred greater body condition loss between calving and first service and had lower plasma glucose and insulin-like growth factor-1 (IGF-1) concentrations than medium genetic merit cows. Furthermore, HGM cows had lower first and second service and overall conception rates, and required more services per conception than the MGM cows. Cows that did not conceive to first service were retrospectively compared to those that conceived to first service within each genetic merit group. There were no significant differences between the HGM cows that did not conceive to first service and those that conceived to this service in terms of milk production, body condition score change between calving and first service, feed intake at first service, or in plasma concentrations of glucose, non-esterified fatty acids (NEFA) or IGF-1. Medium genetic merit cows that did not conceive to first service lost more body condition between calving and first service than did those that conceived to this service. In the present study, HGM cows had higher milk production and reduced reproductive performance in comparison with MGM cows. However, reproductive performance was not associated with milk production, feed intake or plasma concentrations of glucose, NEFA or IGF-1 between calving and first service, since there were no significant differences in these variates between high or medium genetic merit cows that did not conceive to first service and those that conceived to this service. Therefore, these variates are unlikely to be useful predictors of reproductive performance, under the conditions of the present study.


Subject(s)
Cattle/physiology , Lactation/genetics , Milk/metabolism , Reproduction/genetics , Animals , Blood Glucose/metabolism , Body Weight , Cattle/genetics , Eating/physiology , Energy Intake/physiology , Estradiol/blood , Fatty Acids, Nonesterified/blood , Female , Follicle Stimulating Hormone/blood , Insulin-Like Growth Factor I/metabolism , Linear Models , Male , Ovarian Follicle/diagnostic imaging , Ovarian Follicle/physiology , Pregnancy , Progesterone/blood , Reproduction/physiology , Retrospective Studies , Ultrasonography
SELECTION OF CITATIONS
SEARCH DETAIL
...