Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2403158, 2024 Jun 05.
Article in English | MEDLINE | ID: mdl-38837611

ABSTRACT

This work highlights the development of a superior cathode|electrolyte interface for the quasi solid-state rechargeable zinc metal battery (QSS-RZMB) by a novel hydrogel polymer electrolyte using an ultraviolet (UV) light-assisted in situ polymerization strategy. By integrating the cathode with a thin layer of the hydrogel polymer electrolyte, this technique produces an integrated interface that ensures quick Zn2+ ion conduction. The coexistence of nanowires for direct electron routes and the enhanced electrolyte ion infiltration and diffusion by the 3D porous flower structure with a wide open surface of the Zn-MnO electrode complements the interface formation during the in situ polymerization process. The QSS-RZMB configured with an integrated cathode (i-Zn-MnO) and the hydrogel polymer electrolyte (PHPZ-30) as the separator yields a comparable specific energy density of 214.14 Wh kg-1 with that of its liquid counterpart (240.38 Wh kg-1, 0.5 M Zn(CF3SO3)2 aqueous electrolyte). Other noteworthy features of the presented QSS-RZMB system include its superior cycle life of over 1000 charge-discharge cycles and 85% capacity retention with 99% coulombic efficiency at the current density of 1.0 A g-1, compared to only 60% capacity retention over 500 charge-discharge cycles displayed by the liquid-state system under the same operating conditions.

2.
Small ; : e2311923, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38616777

ABSTRACT

Zinc anode deterioration in aqueous electrolytes, and Zn dendrite growth is a major concern in the operation of aqueous rechargeable Zn metal batteries (AZMBs). To tackle this, the replacement of aqueous electrolytes with a zinc hydrogel polymer electrolyte (ZHPE) is presented in this study. This method involves structural modifications of the ZHPE by phytic acid through an ultraviolet (UV) light-induced photopolymerization process. The high membrane flexibility, high ionic conductivity (0.085 S cm-1), improved zinc corrosion overpotential, and enhanced electrochemical stability value of ≈2.3 V versus Zn|Zn2+ show the great potential of ZHPE as an ideal gel electrolyte for rechargeable zinc metal hydrogel batteries (ZMHBs). This is the first time that the dominating effect of chelation of phytic acid with M2+ center over H-bonding with water is described to tune the gel electrolyte properties for battery applications. The ZHPE shows ultra-high stability over 360 h with a capacity of 0.50 mAh cm-2 with dendrite-free plating/stripping in Zn||Zn symmetric cell. The fabrication of the ZMHB with a high-voltage zinc hexacyanoferrate (ZHF) cathode shows a high-average voltage of ≈1.6 V and a comparable capacity output of 63 mAh g-1 at 0.10 A g-1 of the current rate validating the potential application of ZHPE.

3.
Dalton Trans ; 50(12): 4237-4243, 2021 Mar 28.
Article in English | MEDLINE | ID: mdl-33751012

ABSTRACT

Rechargeable batteries consisting of a Zn metal anode and a suitable cathode coupled with a Zn2+ ion-conducting electrolyte are recently emerging as promising energy storage devices for stationary applications. However, the formation of high surface area Zn (HSAZ) architectures on the metallic Zn anode deteriorates their performance upon prolonged cycling. In this work, we demonstrate the application of 1,4,5,8-naphthalenetetracarboxylic dianhydride (NTCDA), an organic compound, as a replacement for the Zn-metal anode enabling the design of a 'rocking-chair'zinc-proton hybrid ion battery. The NTCDA electrode material displays a multi-plateau redox behaviour, delivering a specific discharge capacity of 143 mA h g-1 in the potential window of 1.4 V to 0.3 V vs. Zn|Zn2+. The detailed electrochemical characterization of NTCDA in various electrolytes (an aqueous solution of 1 M ZnOTF, an aqueous solution of 0.01 M H2SO4, and an organic electrolyte of 0.5 M ZnOTF/acetonitrile) reveals that the redox processes leading to charge storage involve a contribution from both H+ and Zn2+. The performance of NTCDA as an anode is further demonstrated by pairing it with a MnO2 cathode, and the resulting MnO2||NTCDA full-cell (zinc-proton hybrid ion battery) delivers a specific discharge capacity of 41 mA h gtotal-1 (normalized with the total mass-loading of both anode and cathode active materials) with an average operating voltage of 0.80 V.

4.
ACS Appl Mater Interfaces ; 12(43): 48542-48552, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33076656

ABSTRACT

Rechargeable aqueous zinc-metal batteries (ZMBs) are considered as potential energy storage devices for stationary applications. Despite the significant developments in recent years, the performance of ZMBs is still limited due to the lack of advanced cathode materials delivering high capacity and long cycle life. In this work, we report a low-temperature and scalable synthesis method following a surfactant-assisted route for preparing manganese-doped hydrated vanadium oxide (MnHVO-30) and its application as the cathode material for ZMB. The as-prepared material possesses a porous architecture and expanded interlayer spacing. Therefore, the MnHVO-30 cathode offers fast and reversible insertion of Zn2+ ions during the charge/discharge process and delivers 341 mAh g-1 capacity at 0.1 A g-1. Moreover, the MnHVO-30||Zn cell retains 82% of its initial capacity over 1200 stability cycles, which is higher compared to that of the undoped system. Besides, a quasi-solid-state home-made pouch cell with an area of 3.3 × 1.6 cm2 and 3.6 mg cm-2 loading is assembled, achieving 115 mAh g-1 capacity over 100 stability cycles. Therefore, this work provides an easy and attractive way for preparing efficient cathode materials for aqueous ZMBs.

5.
Small ; 16(35): e2002528, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32734717

ABSTRACT

This work reports the facile synthesis of nonaqueous zinc-ion conducting polymer electrolyte (ZIP) membranes using an ultraviolet (UV)-light-induced photopolymerization technique, with room temperature (RT) ionic conductivity values in the order of 10-3 S cm-1 . The ZIP membranes demonstrate excellent physicochemical and electrochemical properties, including an electrochemical stability window of >2.4 V versus Zn|Zn2+ and dendrite-free plating/stripping processes in symmetric Zn||Zn cells. Besides, a UV-polymerization-assisted in situ process is developed to produce ZIP (abbreviated i-ZIP), which is adopted for the first time to fabricate a nonaqueous zinc-metal polymer battery (ZMPB; VOPO4 |i-ZIP|Zn) and zinc-metal hybrid polymer supercapacitor (ZMPS; activated carbon|i-ZIP|Zn) cells. The VOPO4 cathode employed in ZMPB possesses a layered morphology, exhibiting a high average operating voltage of ≈1.2 V. As compared to the conventional polymer cell assembling approach using the ex situ process, the in situ process is simple and it enhances the overall electrochemical performance, which enables the widespread intrusion of ZMPBs and ZMPSs into the application domain. Indeed, considering the promising aspects of the proposed ZIP and its easy processability, this work opens up a new direction for the emergence of the zinc-based energy storage technologies.

SELECTION OF CITATIONS
SEARCH DETAIL
...