Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Opt Express ; 20(18): 20191-200, 2012 Aug 27.
Article in English | MEDLINE | ID: mdl-23037071

ABSTRACT

A cladding pumped multicore erbium-doped fiber amplifier for simultaneous amplification of 6 channels is demonstrated. Peak gain over 32 dB has been obtained at a wavelength of 1560 nm and the bandwidth measured at 20-dB gain was about 35 nm. Numerical modeling of cladding pumped multicore erbium-doped amplifier was also performed to study the properties of the amplifier. The results of experiment and simulation are found to be in good agreement.


Subject(s)
Amplifiers, Electronic , Computer-Aided Design , Erbium/chemistry , Fiber Optic Technology/instrumentation , Lasers, Solid-State , Equipment Design , Equipment Failure Analysis
2.
Opt Express ; 20(2): 706-11, 2012 Jan 16.
Article in English | MEDLINE | ID: mdl-22274415

ABSTRACT

We demonstrate 2688-km multi-span transmission using wavelength-division multiplexing (WDM) of ten 50-GHz spaced 128-Gb/s PDM-QPSK signals, space-division multiplexed (SDM) in a low-crosstalk 76.8-km seven-core fiber, achieving a record net aggregate per-fiber-spectral-efficiency-distance product of 40,320 km·b/s/Hz. The demonstration was enabled by a novel core-to-core signal rotation scheme implemented in a 7-fold, synchronized recirculating loop apparatus.


Subject(s)
Fiber Optic Technology/instrumentation , Fiber Optic Technology/methods , Optical Fibers , Telecommunications/instrumentation , Electronics/instrumentation , Electronics/methods , Equipment Design
3.
Opt Express ; 19(17): 16665-71, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935028

ABSTRACT

We describe a new multicore fiber (MCF) having seven single-mode cores arranged in a hexagonal array, exhibiting low crosstalk among the cores and low loss across the C and L bands. We experimentally demonstrate a record transmission capacity of 112 Tb/s over a 76.8-km MCF using space-division multiplexing and dense wavelength-division multiplexing (DWDM). Each core carries 160 107-Gb/s polarization-division multiplexed quadrature phase-shift keying (PDM-QPSK) channels on a 50-GHz grid in the C and L bands, resulting in an aggregate spectral efficiency of 14 b/s/Hz. We further investigate the impact of the inter-core crosstalk on a 107-Gb/s PDM-QPSK signal after transmitting through the center core of the MCF when all the 6 outer cores carry same-wavelength 107-Gb/s signals with equal powers, and discuss the system implications of core-to-core crosstalk on ultra-long-haul transmission.

4.
Opt Express ; 19(17): 16715-21, 2011 Aug 15.
Article in English | MEDLINE | ID: mdl-21935033

ABSTRACT

A multicore erbium-doped fiber (MC-EDF) amplifier for simultaneous amplification in the 7-cores has been developed, and the gain and noise properties of individual cores have been studied. The pump and signal radiation were coupled to individual cores of MC-EDF using two tapered fiber bundled (TFB) couplers with low insertion loss. For a pump power of 146 mW, the average gain achieved in the MC-EDF fiber was 30 dB, and noise figure was less than 4 dB. The net useful gain from the multicore-amplifier, after taking into consideration of all the passive losses, was about 23-27 dB. Pump induced ASE noise transfer between the neighboring channel was negligible.

5.
Opt Express ; 19(26): B958-64, 2011 Dec 12.
Article in English | MEDLINE | ID: mdl-22274125

ABSTRACT

We demonstrate the generation of a 1.12-Tb/s superchannel based on coherent optical orthogonal frequency-division multiplexing with polarization-division multiplexed 32-QAM subcarriers, achieving a net intrachannel-spectral-efficiency (ISE) of 8.6 b/s/Hz. Using space-division multiplexing (SDM), we transmit this superchannel over a 76.8-km low-crosstalk multi-core-fiber (MCF) with a record aggregate ISE of 60 b/s/Hz per fiber. We also discuss the impact of core-to-core crosstalk on transmission performance, as well as future perspectives of MCF-based SDM transmission.

6.
Opt Express ; 18(11): 11117-22, 2010 May 24.
Article in English | MEDLINE | ID: mdl-20588970

ABSTRACT

We design and fabricate a novel multicore fiber (MCF), with seven cores arranged in a hexagonal array. The fiber properties of MCF including low crosstalk, attenuation and splice loss are described. A new tapered MCF connector (TMC), showing ultra-low crosstalk and losses, is also designed and fabricated for coupling the individual signals in-and-out of the MCF. We further propose a novel network configuration using parallel transmissions with the MCF and TMC for passive optical network (PON). To the best of our knowledge, we demonstrate the first bi-directional parallel transmissions of 1310 nm and 1490 nm signals over 11.3-km of seven-core MCF with 64-way splitter for PON.


Subject(s)
Computer Communication Networks/instrumentation , Optical Fibers , Telecommunications/instrumentation , Equipment Design , Equipment Failure Analysis
7.
Opt Lett ; 31(21): 3191-3, 2006 Nov 01.
Article in English | MEDLINE | ID: mdl-17041678

ABSTRACT

We demonstrate propagation of 14 nJ femtosecond pulses through a large-mode-area, higher-order-mode (HOM) fiber with an effective area of 2100 microm2. The pulses propagate stably in the LP07 mode of the fiber through lengths as long as 12 m. The strongly chirped pulses exiting the amplifier fiber are dechirped by the high-order-mode fiber, resulting in pulses with a peak power of 61 kW after propagation in 5 m of the positive-dispersion fiber. A small amount of self-phase modulation is observed in the compressed pulses and is described well by a nonlinear Schrödinger equation model that takes into account the measured effective area and dispersion of the HOM fiber.

8.
Opt Lett ; 31(17): 2532-4, 2006 Sep 01.
Article in English | MEDLINE | ID: mdl-16902609

ABSTRACT

We demonstrate an all-solid (nonholey), silica-based fiber with anomalous dispersion at wavelengths where silica material dispersion is negative. This is achieved by exploiting the enhanced dispersion engineering capabilities of higher-order modes in a fiber, yielding + 60 ps/nm km dispersion at 1080 nm. By coupling to the desired higher-order mode with low-loss in-fiber gratings, we realize a 5 m long fiber module with a 300 fs/nm dispersion that yields a 1 dB bandwidth of 51 nm with an insertion loss of approximately 0.1 dB at the center wavelength of 1080 nm. We demonstrate its functionality as a critical enabler for an all-fiber, Yb-based, mode-locked femtosecond ring laser.

9.
Opt Lett ; 31(12): 1797-9, 2006 Jun 15.
Article in English | MEDLINE | ID: mdl-16729074

ABSTRACT

We demonstrate robust single-transverse-mode light propagation in higher-order modes of a fiber, with effective area A(eff) ranging from 2,100 to 3,200 microm(2). These modes are accessed using long-period fiber gratings that enable higher-order-mode excitation over a bandwidth of 94 mm with greater than 99% of the light in the desired mode. The fiber is designed such that the effective index separation between modes is always large, hence minimizing in-fiber mode mixing and enabling light propagation over lengths as large as 12 m, with bends down to 4.5 cm radii. The modal stability increases with mode order, suggesting that A(eff) of this platform is substantially scalable.

10.
Opt Lett ; 30(23): 3225-7, 2005 Dec 01.
Article in English | MEDLINE | ID: mdl-16342728

ABSTRACT

Delivery of high peak-power femtosecond pulses with fibers is constrained by nonlinear distortions accumulated during pulse propagation. We address this problem with a novel, to our knowledge, fiber schematic, where the pulse propagates in a small Aeff (18 microm2) but highly dispersive (record value of approximately -900 ps/nm km) medium, enabled by transmission in the LP02 mode of a few-mode fiber. The novel fiber yields a low dispersion-to-nonlinear-length ratio (due to its large dispersion) despite its small Aeff, hence enabling mitigation of nonlinearities. This enables fiber delivery of distortion-free <150 fs, approximately 1 nJ, and 840 nm pulses--an order-of-magnitude improvement over single-mode fibers of similar Aeff.


Subject(s)
Fiber Optic Technology/instrumentation , Image Enhancement/instrumentation , Lasers , Microscopy, Fluorescence/instrumentation , Equipment Design , Equipment Failure Analysis , Fiber Optic Technology/methods , Image Enhancement/methods , Microscopy, Fluorescence/methods
11.
Opt Lett ; 30(21): 2864-6, 2005 Nov 01.
Article in English | MEDLINE | ID: mdl-16279451

ABSTRACT

Polarization dependence in microbend gratings is an inherent problem, even in perfectly circular fibers, since antisymmetric modes are almost degenerate linear combinations of four distinct, polarization-sensitive modes. We demonstrate a novel fiber design that lifts polarization degeneracies of the antisymmetric modes to solve this problem. By intentionally exacerbating the polarization splittings, we achieve coupling to only the polarization-insensitive doublet, over wavelength ranges exceeding 100 nm, thus demonstrating a device with practical usable bandwidths. This allows all previous applications envisaged with UV-induced long-period gratings to be realized with the significantly lower-cost microbend technology platform.

SELECTION OF CITATIONS
SEARCH DETAIL
...