Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; : e202405047, 2024 Mar 23.
Article in English | MEDLINE | ID: mdl-38520388

ABSTRACT

Although sulfurated polymers promise unique properties, their controlled synthesis, particularly when it comes to complex and functional architectures, remains challenging. Here, we show that the copolymerization of oxetane and phenyl isothiocyanate selectively yields polythioimidocarbonates as a new class of sulfur containing polymers, with narrow molecular weight distributions (Mn=5-80 kg/mol with D≤1.2; Mn,max=124 kg/mol) and high melting points of up to 181 °C. The method tolerates different substituent patterns on both the oxetane and the isothiocyanate. Self-nucleation experiments reveal that π-stacking of phenyl substituents, the presence of unsubstituted polymer backbones, and the kinetically controlled linkage selectivity are key factors in maximising melting points. The increased tolerance to macro-chain transfer agents and the controlled propagation allows the synthesis of double crystalline and amphiphilic diblock copolymers, which can be assembled into micellar- and worm-like structures with amorphous cores in water. In contrast, crystallization driven self-assembly in ethanol gives cylindrical micelles or platelets.

2.
Biomacromolecules ; 25(1): 119-133, 2024 01 08.
Article in English | MEDLINE | ID: mdl-38112688

ABSTRACT

The development of copolymerization techniques that can randomly incorporate biodegradable moieties into the hyperbranched polyglycerol backbone is an option to prevent its bioaccumulation in vivo. In this study, redox-responsive and biocompatible hyperbranched polyglycerol copolymers of glycidol and 1,4,5-oxadithiepan-2-one were synthesized with an adjustable molecular weight and a defined disulfide bond content through anionic and coordination-insertion ring-opening polymerization. A truly random incorporation of the monomers was achieved under both copolymerization mechanisms. The copolymers were further characterized in terms of their aggregation behavior in solution, degradability, in vitro cell viability, and blood compatibility for potential future biomedical applications. Transmission electron microscopy revealed that the copolymer assembled into nanoparticles with a size range of 20 nm. The copolymers underwent degradation when incubated with two different reducing agents, resulting in smaller fragments of the polymer with thiol end groups. The copolymers demonstrated good biocompatibility, making them suitable for further investigation in biomedical applications.


Subject(s)
Disulfides , Polymers , Polymerization , Polymers/chemistry , Oxidation-Reduction
3.
Pharmaceuticals (Basel) ; 16(11)2023 Nov 16.
Article in English | MEDLINE | ID: mdl-38004483

ABSTRACT

Rare gastrointestinal stromal tumors (GISTs) are caused by mutations in the KIT and PDGFRA genes. Avapritinib (BLU-285) is a targeted selective inhibitor for mutated KIT and PDGFRA receptors that can be used to treat these tumors. However, there are subtypes of GISTs that exhibit resistance against BLU-285 and thus require other treatment strategies. This can be addressed by employing a drug delivery system that transports a combination of drugs with distinct cell targets. In this work, we present the synthesis of esterase-responsive polyglycerol-based nanogels (NGs) to overcome drug resistance in rare GISTs. Using inverse nanoprecipitation mediated with inverse electron-demand Diels-Alder cyclizations (iEDDA) between dPG-methyl tetrazine and dPG-norbornene, multi-drug-loaded NGs were formed based on a surfactant-free encapsulation protocol. The obtained NGs displayed great stability in the presence of fetal bovine serum (FBS) and did not trigger hemolysis in red blood cells over a period of 24 h. Exposing the NGs to Candida Antarctica Lipase B (CALB) led to the degradation of the NG network, indicating the capability of targeted drug release. The bioactivity of the loaded NGs was tested in vitro on various cell lines of the GIST-T1 family, which exhibit different drug resistances. Cell internalization with comparable uptake kinetics of the NGs could be confirmed by confocal laser scanning microscopy (CLSM) and flow cytometry for all cell lines. Cell viability and live cell imaging studies revealed that the loaded NGs are capable of intracellular drug release by showing similar IC50 values to those of the free drugs. Furthermore, multi-drug-loaded NGs were capable of overcoming BLU-285 resistance in T1-α-D842V + G680R cells, demonstrating the utility of this carrier system.

4.
Pharmaceutics ; 15(10)2023 Oct 12.
Article in English | MEDLINE | ID: mdl-37896212

ABSTRACT

The application of micelles as drug delivery systems has gained a great deal of attention as a means to overcome the current several drawbacks present in conventional cancer treatments. In this work, we highlight the comparison of polymeric and monomeric amphiphilic systems with a similar hydrophilic-lipophilic balance (HLB) in terms of their biocompatibility, aggregation behavior in aqueous solution, and potential in solubilizing hydrophobic compounds. The polymeric system consists of non-ionic polymeric amphiphiles synthesized via sequential RAFT polymerization of polyglycerol first-generation [G1] dendron methacrylate and cholesterol methacrylate to obtain poly(G1-polyglycerol dendron methacrylate)-block-poly(cholesterol methacrylate) (pG1MA-b-pCMA). The monomeric system is a polyglycerol second-generation [G2] dendron end-capped to a cholesterol unit. Both amphiphiles form spherical micellar aggregations in aqueous solution, with differences in size and the morphology in which hydrophobic molecules can be encapsulated. The polymeric and monomeric micelles showed a low critical micelle concentration (CMC) of 0.2 and 17 µg/mL, respectively. The results of our cytotoxicity assays showed that the polymeric system has significantly higher cell viability compared to that of the monomeric amphiphiles. The polymeric micelles were implemented as drug delivery systems by encapsulation of the hydrophobic small molecule doxorubicin, achieving a loading capacity of 4%. In summary, the results of this study reveal that using cholesterol as a building block for polymer synthesis is a promising method of preparation for efficient drug delivery systems while improving the cell viability of monomeric cholesterol.

5.
J Mater Chem B ; 11(17): 3797-3807, 2023 05 03.
Article in English | MEDLINE | ID: mdl-37006120

ABSTRACT

Insufficient stability of micellar drug delivery systems is still the major limitation to their systematic application in chemotherapy. This work demonstrates novel π-electron stabilized polyelectrolyte block copolymer micelles based on dendritic polyglycerolsulfate-cystamine-block-poly(4-benzoyl-1,4-oxazepan-7-one)-pyrene (dPGS-SS-POxPPh-Py) presenting a very low critical micelle concentration (CMC) of 0.3 mg L-1 (18 nM), 55-fold lower than that of conventional amphiphilic block copolymer micelles. The drug loading capacities of up to 13 wt% allow the efficient encapsulation of the chemotherapeutic Docetaxel (DTX). The spherical morphology of the micelles was proven by cryogenic electron microscopy (cryo-EM). Gaussian Analysis revealed well-defined sizes of 57 nm and 80 nm in the unloaded/loaded state, respectively. Experiments by dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-VIS), fluorescence spectroscopy, and cross-polarization solid-state 13C NMR studied the π-π interactions between the core-forming block segment of dPGS-SS-POxPPh-Py and DTX. The findings point to a substantial contribution of these noncovalent interactions to the system's high stability. By confocal laser scanning microscopy (CLSM), the cellular uptake of fluorescein-labelled FITC-dPGS-SS-POxPPh-Py micelles was monitored after one day displaying the successful cell insertion of the cargo-loaded systems. To ensure the drug release in cancerous cells, the disassembly of the micellar DTX-formulations was achieved by reductive and enzymatic degradation studied by light scattering and GPC experiments. Further, no size increase nor disassembly in the presence of human serum proteins after four days was detected. The precise in vitro drug release was also given by the high potency of inhibiting cancer cell growth, finding half-maximal inhibitory concentrations (IC50) efficiently reduced to 68 nM coming along with high viabilities of the empty polymer materials tested on tumor-derived HeLa, A549, and McF-7 cell lines after two days. This study highlights the substantial potential of micelles tailored through the combination of π-electron stabilization with dendritic polyglycerolsulfate for targeted drug delivery systems, enabling them to have a significant foothold in the clinical treatment of cancer.


Subject(s)
Amides , Micelles , Humans , Docetaxel , Esters , Taxoids/chemistry , Taxoids/pharmacology , Polymers/chemistry
6.
Angew Chem Int Ed Engl ; 61(49): e202203942, 2022 12 05.
Article in English | MEDLINE | ID: mdl-35575255

ABSTRACT

Poor water solubility and low bioavailability of active pharmaceutical ingredients (APIs) are major causes of friction in the pharmaceutical industry and represent a formidable hurdle for pharmaceutical drug development. Drug delivery remains the major challenge for the application of new small-molecule drugs as well as biopharmaceuticals. The three challenges for synthetic delivery systems are: (i) controlling drug distribution and clearance in the blood; (ii) solubilizing poorly water-soluble agents, and (iii) selectively targeting specific tissues. Although several polymer-based systems have addressed the first two demands and have been translated into clinical practice, no targeted synthetic drug delivery system has reached the market. This Review is designed to provide a background on the challenges and requirements for the design and translation of new polymer-based delivery systems. This report will focus on chemical approaches to drug delivery for systemic applications.


Subject(s)
Drug Delivery Systems , Polymers , Solubility , Pharmaceutical Preparations/chemistry , Polymers/chemistry , Water/chemistry
7.
J Mater Chem B ; 10(1): 96-106, 2021 12 22.
Article in English | MEDLINE | ID: mdl-34881771

ABSTRACT

The concept of multivalency finds various applications in the fields of chemistry and biology, relying on the principle that multiple weak interactions can lead to strong adhesive forces. Polymeric carriers are promising tools to translate these properties into the field of biomedicine, especially upon functionalization by active biomolecules, such as antibodies. In this study we report on the synthesis of dendritic polyglycerol (dPG) and dPG-based nanogels (NGs) as platforms for the multivalent display of molecules and their potential application as carrier units. Macromolecules based on dPG were synthesized and NGs were generated by strain-promoted azide-alkyne cycloaddition (SPAAC) by inverse nanoprecipitation under mild conditions. Scale-up screening rendered a reproducible method for a batch size of up to 50 mg for the formation of NGs in a size range of 150 nm with narrow dispersity. Dye-labelled bovine serum albumin (FITC-BSA) was chosen as a model protein and showed successful conjugation to the carriers, while the protein's secondary structure was not affected. Consequently, cyanine-5-amine (Cy5-NH2) and avidin (Av) were conjugated in order to exploit the strong avidin-biotin interaction, facilitating the directed attachment of a myriad of biotinylated (bio)molecules. As a proof-of-concept, the biotinylated monoclonal antibodies (mAbs) α-CD3 and α-CD28 were attached to the platforms and their capability to activate T cells was assessed. Experiments were performed with a Jurkat reporter cell line which expresses green fluorescent protein (GFP) upon activation, providing a rapid and reliable readout by flow cytometry. Carriers clearly outperformed conventional compounds for activation (i.e. antibodies crosslinked with anti-IgG antibody) at significantly lower dosages. These findings could be confirmed by confocal laser scanning microscopy (CLSM), showing accumulation of the functional nanoplatforms at the cell surface and cytoplasmic GFP expression (>95% activation of cells for the multivalent conjugates at 10 µg mL-1 compared to 37% activation with conventionally crosslinked mAbs at 25 µg mL-1), whereas carriers without mAbs could not activate cells. As the attachment of biotinylated molecules to the functional nanoplatforms is straightforward, the results obtained show the great potential of our platforms for a broad range of applications.


Subject(s)
Biocompatible Materials/pharmacology , Glycerol/pharmacology , Nanogels/chemistry , Polymers/pharmacology , T-Lymphocytes/drug effects , Avidin/chemistry , Biocompatible Materials/chemistry , Carbocyanines/chemistry , Drug Carriers/chemistry , Drug Carriers/pharmacology , Glycerol/chemistry , Humans , Materials Testing , Particle Size , Polymers/chemistry , Serum Albumin, Bovine/chemistry , T-Lymphocytes/immunology
8.
Pharmaceutics ; 13(8)2021 Aug 17.
Article in English | MEDLINE | ID: mdl-34452237

ABSTRACT

The sensitivity of therapeutic proteins is a challenge for their use in biomedical applications, as they are prone to degradation and opsonization, thus limiting their potential. This demands for the development of drug delivery systems shielding proteins and releasing them at the site of action. Here, we describe the synthesis of novel polyglycerol-based redox-responsive nanogels and report on their potential as nanocarrier systems for the delivery of cytochrome C (CC). This system is based on an encapsulation protocol of the therapeutic protein into the polymer network. NGs were formed via inverse nanoprecipitation using inverse electron-demand Diels-Alder cyclizations (iEDDA) between methyl tetrazines and norbornenes. Coprecipitation of CC led to high encapsulation efficiencies. Applying physiological reductive conditions of l-glutathione (GSH) led to degradation of the nanogel network, releasing 80% of the loaded CC within 48 h while maintaining protein functionality. Cytotoxicity measurements revealed high potency of CC-loaded NGs for various cancer cell lines with low IC50 values (up to 30 µg·mL-1), whereas free polymer was well tolerated up to a concentration of 1.50 mg·mL-1. Confocal laser scanning microscopy (CLSM) was used to monitor internalization of free and CC-loaded NGs and demonstrate the protein cargo's release into the cytosol.

9.
Biomacromolecules ; 22(6): 2625-2640, 2021 06 14.
Article in English | MEDLINE | ID: mdl-34076415

ABSTRACT

In this paper, we present well-defined dPGS-SS-PCL/PLGA/PLA micellar systems demonstrating excellent capabilities as a drug delivery platform in light of high stability and precise in vitro and in vivo drug release combined with active targetability to tumors. These six amphiphilic block copolymers were each targeted in two different molecular weights (8 or 16 kDa) and characterized using 1H NMR, gel permeation chromatography (GPC), and elemental analysis. The block copolymer micelles showed monodispersed size distributions of 81-187 nm, strong negative charges between -52 and -41 mV, and low critical micelle concentrations (CMCs) of up to 1.13-3.58 mg/L (134-527 nM). The serum stability was determined as 94% after 24 h. The drug-loading efficiency for Sunitinib ranges from 38 to 83% (8-17 wt %). The release was selectively triggered by glutathione (GSH) and lipase, reaching 85% after 5 days, while only 20% leaching was observed under physiological conditions. Both the in vitro and in vivo studies showed sustained release of Sunitinib over 1 week. CCK-8 assays on HeLa lines demonstrated the high cell compatibility (1 mg/mL, 94% cell viability, 48 h) and the high cancer cell toxicity of Sunitinib-loaded micelles (IC50 2.5 µg/mL). By in vivo fluorescence imaging studies on HT-29 tumor-bearing mice, the targetability of dPGS7.8-SS-PCL7.8 enabled substantial accumulation in tumor tissue compared to nonsulfated dPG3.9-SS-PCL7.8. As a proof of concept, Sunitinib-loaded dPGS-SS-poly(ester) micelles improved the antitumor efficacy of the chemotherapeutic. A tenfold lower dosage of loaded Sunitinib led to an even higher tumor growth inhibition compared to the free drug, as demonstrated in a HeLa human cervical tumor-bearing mice model. No toxicity for the organism was observed, confirming the good biocompatibility of the system.


Subject(s)
Micelles , Neoplasms , Animals , Drug Carriers , Drug Delivery Systems , Drug Liberation , Esters , Glycerol , Humans , Mice , Neoplasms/drug therapy , Polyethylene Glycols , Sulfates
10.
Polymers (Basel) ; 13(6)2021 Mar 23.
Article in English | MEDLINE | ID: mdl-33806866

ABSTRACT

Biocompatible polymers with the ability to load and release a cargo at the site of action in a smart response to stimuli have attracted great attention in the field of drug delivery and cancer therapy. In this work, we synthesize a dual-responsive dendritic polyglycerol sulfate (DR-dPGS) drug delivery system by copolymerization of glycidol, ε-caprolactone and an epoxide monomer bearing a disulfide bond (SSG), followed by sulfation of terminal hydroxyl groups of the copolymer. The effect of different catalysts, including Lewis acids and organic bases, on the molecular weight, monomer content and polymer structure was investigated. The degradation of the polymer backbone was proven in presence of reducing agents and candida antarctica Lipase B (CALB) enzyme, which results in the cleavage of the disulfides and ester bonds, respectively. The hydrophobic anticancer drug Doxorubicin (DOX) was loaded in the polymer and the kinetic assessment showed an enhanced drug release with glutathione (GSH) or CALB as compared to controls and a synergistic effect of a combination of both stimuli. Cell uptake was studied by using confocal laser scanning microscopy with HeLa cells and showed the uptake of the Dox-loaded carriers and the release of the drug into the nucleus. Cytotoxicity tests with three different cancer cell lines showed good tolerability of the polymers of as high concentrations as 1 mg mL-1, while cancer cell growth was efficiently inhibited by DR-dPGS@Dox.

11.
Biomacromolecules ; 22(4): 1406-1416, 2021 04 12.
Article in English | MEDLINE | ID: mdl-33792290

ABSTRACT

Since several decades, PEGylation is known to be the clinical standard to enhance pharmacokinetics of biotherapeutics. In this study, we introduce polyglycerol (PG) of different lengths and architectures (linear and hyperbranched) as an alternative polymer platform to poly(ethylene glycol) (PEG) for half-life extension (HLE). We designed site-selective N-terminally modified PG-protein conjugates of the therapeutic protein anakinra (IL-1ra, Kineret) and compared them systematically with PEG analogues of similar molecular weights. Linear PG and PEG conjugates showed comparable hydrodynamic sizes and retained their secondary structure, whereas binding affinity to IL-1 receptor 1 decreased with increasing polymer length, yet remained in the low nanomolar range for all conjugates. The terminal half-life of a 40 kDa linear PG-modified anakinra was extended 4-fold compared to the unmodified protein, close to its PEG analogue. Our results demonstrate similar performances of PEG- and PG-anakinra conjugates and therefore highlight the outstanding potential of polyglycerol as a PEG alternative for half-life extension of biotherapeutics.


Subject(s)
Life Expectancy , Polymers , Glycerol , Half-Life , Polyethylene Glycols
12.
Biomater Sci ; 5(11): 2328-2336, 2017 Oct 24.
Article in English | MEDLINE | ID: mdl-29034396

ABSTRACT

In the present study, a pH sensitive nanogel platform for gene delivery was developed. The cationic nanogels based on dendritic polyglycerol (dPG) and low molecular weight polyethylenimine units were able to encapsulate siRNA during the manufacturing process. The thiol-Michael nanoprecipitation method, which operates under mild conditions and did not require any catalyst or surfactant, was used to develop tailor-made nanogels in the sub-100 nm range. The incorporation of pH sensitive benzacetal-bonds inside the nanogel network enables the controlled intracellular release of the cargo. The functionality to transport therapeutic biomolecules was tested by an in vitro GFP-siRNA transfection assay. Encapsulated siRNA could silence GFP expressing HeLa cells (up to 71% silencing in GFP). Furthermore, significantly reduced toxicity of the nanogel platform compared to the non-degradable PEI was observed. These properties realize a new carrier platform in the field of gene therapy.


Subject(s)
Drug Carriers/chemistry , Gene Silencing , Nanoparticles/chemistry , Polyethylene Glycols/chemistry , Polyethyleneimine/chemistry , RNA, Small Interfering/chemistry , RNA, Small Interfering/genetics , Drug Liberation , Gels , HeLa Cells , Humans , Hydrogen-Ion Concentration , Transfection
13.
Biomacromolecules ; 18(6): 1762-1771, 2017 Jun 12.
Article in English | MEDLINE | ID: mdl-28511014

ABSTRACT

The adsorption of biomolecules to the surface of nanoparticles (NPs) following administration into biological environments is widely recognized. In particular, the "protein corona" is well understood in terms of formation kinetics and impact upon the biological interactions of NPs. Its presence is an essential consideration in the design of therapeutic NPs. In the present study, the protein coronas of six polymeric nanoparticles of prospective therapeutic use were investigated. These included three colloidal NPs-soft core-multishell (CMS) NPs, plus solid cationic Eudragit RS (EGRS), and anionic ethyl cellulose (EC) nanoparticles-and three nanogels (NGs)-thermoresponsive dendritic-polyglycerol (dPG) nanogels (NGs) and two amino-functionalized dPG-NGs. Following incubation with human plasma, protein coronas were characterized and their biological interactions compared with pristine NPs. All NPs demonstrated protein adsorption and increased hydrodynamic diameters, although the solid EGRS and EC NPs bound notably more protein than the other tested particles. Shifts toward moderately negative surface charges were also observed for all corona bearing NPs, despite varied zeta potentials in their pristine states. While the uptake and cellular adhesion of the colloidal NPs in primary human keratinocytes and human umbilical vein endothelial cells were significantly decreased when bearing the protein corona, no obvious impact was seen in the NGs. By contrast, corona bearing NGs induced marked increases in cytokine release from primary human macrophages not seen with corona bearing colloidal NPs. Despite this, no apparent enhancement to in vitro toxicity was noted. Finally, drug release from EGRS and EC NPs was assessed, where a decrease was seen in the EGRS NPs alone. Together these results provide a direct comparison of the physical and biological impact the protein corona has on NPs of widely varied character and in particular highlights a distinction between the corona's effects on NGs and colloidal NPs.


Subject(s)
Acrylic Resins/chemistry , Biocompatible Materials/chemistry , Cellulose/analogs & derivatives , Glycerol/chemistry , Nanoparticles/chemistry , Polymers/chemistry , Protein Corona/chemistry , Anti-Inflammatory Agents/chemistry , Anti-Inflammatory Agents/metabolism , Biocompatible Materials/pharmacology , Blood Proteins/chemistry , Cellulose/chemistry , Colloids , Cytokines/biosynthesis , Cytokines/metabolism , Dexamethasone/chemistry , Dexamethasone/metabolism , Drug Compounding , Drug Liberation , Human Umbilical Vein Endothelial Cells/cytology , Human Umbilical Vein Endothelial Cells/drug effects , Human Umbilical Vein Endothelial Cells/metabolism , Humans , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/immunology , Macrophage Activation , Macrophages/cytology , Macrophages/drug effects , Macrophages/immunology , Primary Cell Culture , Static Electricity
14.
Macromol Biosci ; 17(10)2017 10.
Article in English | MEDLINE | ID: mdl-28394490

ABSTRACT

In the present study, a pH responsive dendritic polyglycerol nanogel (dPG-NG) is developed to measure the pH values inside the hair follicle (HF) using an ex vivo porcine ear model. The macromolecular precursors are labeled with a pH sensitive indodicarbocyanine dye (pH-IDCC) and a control dye (indocarbocyanine dye: ICC) and crosslinked via a mild and surfactant-free Thiol-Michael reaction using an inverse nanoprecipitation method. With this method, it is possible to prepare tailor-made particles in the range of 100 nm to 1 µm with a narrow polydispersity. The dPG-NGs are characterized using dynamic light scattering, nanoparticle tracking analysis, and atomic force microscopy. Systematic analysis of confocal microscope images of histological sections of the skin enables accurate determination of the pH gradient inside the HF. The results show that these novel pH-nanosensors deeply penetrate the skin via the follicular pathway and the pH of the pig hair follicles increase from 6.5 at the surface of the skin to 7.4 in deeper areas of the HF. The pH-nanosensor shows no toxicity potentials.


Subject(s)
Biosensing Techniques , Glycerol/chemistry , Hair Follicle/metabolism , Nanostructures/chemistry , Polymers/chemistry , Animals , Carbocyanines/chemistry , Coloring Agents/chemistry , Cross-Linking Reagents/chemistry , Ear/anatomy & histology , Gels , Hydrogen-Ion Concentration , Swine , Tissue Culture Techniques
15.
Macromol Biosci ; 17(1)2017 01.
Article in English | MEDLINE | ID: mdl-27430195

ABSTRACT

The development of effective nonviral vectors for gene therapy is still a challenge in research, due to the high toxicity of many existing polycationic nanocarriers. In this paper, the development of two pH-cleavable polyglycerol-amine-based nanocarriers is described. The benz-acetal bond represents the pH-sensitive cleavage site between dendritic polyglycerol (dPG) and glycerol-based 1,2-diamines that can complex genetic material. Due to the acid lability of the acetal moiety, the cleavable dPG-amines are less toxic in vitro. Cell-mediated degradation results in non-toxic dPG with low amine functionalization and low molecular weight cleavage products (cp). The genetic material is released because of the loss of multivalent amine groups. Interestingly, the release kinetics at the endosomal pH could be controlled by simple chemical modification of the acetals. In vitro experiments demonstrate the ability of the cleavable dPG-amine to transfect HeLa cells with GFP-DNA, which resulted in cell-compatible cleavage products.


Subject(s)
Amines/chemical synthesis , Dendrimers/chemistry , Gene Transfer Techniques , Glycerol/chemistry , Polymers/chemistry , Amines/chemistry , Cell Survival , Dynamic Light Scattering , Electrophoretic Mobility Shift Assay , Fluorescence , Green Fluorescent Proteins/metabolism , HeLa Cells , Humans , Hydrogen-Ion Concentration , Proton Magnetic Resonance Spectroscopy , Static Electricity , Transfection
16.
ACS Appl Mater Interfaces ; 8(41): 27530-27538, 2016 Oct 19.
Article in English | MEDLINE | ID: mdl-27669888

ABSTRACT

Cancer nanomedicines are typically stealthed by a poly(ethylene glycol) layer that is important to obtain extended blood circulation and elevated tumor accumulation. PEG stealth, however, also leads to poor tumor cell selectivity and uptake thereby reducing treatment efficacy. Here, we report that biodegradable micelles with sheddable dendritic polyglycerol sulfate (dPGS) shells show an unusual tumor targetability and chemotherapy in vivo. The self-assembly of dPGS-SS-poly(ε-caprolactone) amphiphilic block copolymer with an Mn of 4.8-3.7 kg mol-1 affords negatively charged and small sized micelles (dPGS-SS-PCL Ms). dPGS-SS-PCL Ms reveal a low cytotoxicity, decent doxorubicin (DOX) loading, and accelerated drug release under a reductive condition. Notably, DOX-loaded dPGS-SS-PCL Ms exhibit a high tolerable dosage of more than 40 mg kg-1, a long plasma half-life of ca. 2.8 h, and an extraordinary tumor accumulation. Intriguingly, therapeutic results demonstrate that DOX-loaded dPGS-SS-PCL Ms induce complete tumor suppression, significantly improved survival rate, and diminishing adverse effects as compared to free drug (DOX·HCl) in MCF-7 human mammary carcinoma models. Dendritic polyglycerol sulfate with a superior tumor homing ability appears to be an attractive alternative to PEG in formulating targeted cancer nanomedicines.

17.
J Control Release ; 242: 35-41, 2016 11 28.
Article in English | MEDLINE | ID: mdl-27469470

ABSTRACT

Nanogels offer many unique features rendering them as very attractive candidates for drug delivery. However, for their applications the loading capacity and specific encapsulation, in particular for hydrophobic drugs, in a complex media are two critical factors. In this work, we report for the first time on the preparation of nanogel-peptide conjugates with the ability of specific encapsulation of temoporfin (m-THPC). The peptide was selected based on combinatorial means and it was conjugated to polyglycerol as the nanogel precursor. We observed that the loading capacity of nanogels improved 16 times upon peptide conjugation. Skin penetrations tests in barrier deficient skin showed that nanogel-peptide conjugates enhance the penetration of m-THPC in the viable skin layers efficiently. This study indicates that nanogel-peptide conjugates could be used as unique carriers with high loading capacity for hydrophobic compounds, which provides the basis for the design of advanced topical drug delivery systems.


Subject(s)
Drug Delivery Systems , Mesoporphyrins/administration & dosage , Nanoparticles , Skin Absorption , Administration, Cutaneous , Drug Carriers/chemistry , Glycerol/chemistry , Humans , Hydrophobic and Hydrophilic Interactions , Mesoporphyrins/pharmacokinetics , Peptides/chemistry , Photosensitizing Agents/administration & dosage , Photosensitizing Agents/pharmacokinetics , Polymers/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...