Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 22
Filter
Add more filters










Publication year range
1.
Toxicol Appl Pharmacol ; 482: 116784, 2024 01.
Article in English | MEDLINE | ID: mdl-38070752

ABSTRACT

Potential genotoxicity and carcinogenicity of carbon nanotubes (CNT), as well as the underlying mechanisms, remains a pressing topic. The study aimed to evaluate and compare the genotoxic effect and mechanisms of DNA damage under exposure to different types of CNT. Immortalized human cell lines of respiratory origin BEAS-2B, A549, MRC5-SV40 were exposed to three types of CNT: MWCNT Taunit-M, pristine and purified SWCNT TUBALL™ at concentrations in the range of 0.0006-200 µg/ml. Data on the CNT content in the workplace air were used to calculate the lower concentration limit. The genotoxic potential of CNTs was investigated at non-cytotoxic concentrations using a DNA comet assay. We explored reactive oxygen species (ROS) formation, direct genetic material damage, and expression of a profibrotic factor TGFB1 as mechanisms related to genotoxicity upon CNT exposure. An increase in the number of unstable DNA regions was observed at a subtoxic concentration of CNT (20 µg/ml), with no genotoxic effects at concentrations corresponding to industrial exposures being found. While the three test articles of CNTs exhibited comparable genotoxic potential, their mechanisms appeared to differ. MWCNTs were found to penetrate the nucleus of respiratory cells, potentially interacting directly with genetic material, as well as to enhance ROS production and TGFB1 gene expression. For A549 and MRC5-SV40, genotoxicity depended mainly on MWCNT concentration, while for BEAS-2B - on ROS production. Mechanisms of SWCNT genotoxicity were not so obvious. Oxidative stress and increased expression of profibrotic factors could not fully explain DNA damage under SWCNT exposure, and other mechanisms might be involved.


Subject(s)
Nanotubes, Carbon , Humans , Nanotubes, Carbon/toxicity , Reactive Oxygen Species , DNA Damage , Cell Line , DNA , Cell Survival
2.
J Agric Food Chem ; 71(41): 14979-14988, 2023 Oct 18.
Article in English | MEDLINE | ID: mdl-37791964

ABSTRACT

Serious concerns about the negative impact of ethylenediaminetetraacetic acid (EDTA) on the environment resulted in severe restrictions imposed on this compound in many countries. One of the main concerns is related to the use of EDTA in agriculture as a chelator in microelement fertilizers: being introduced directly into the sawing fields, it penetrates into groundwater, with no chance to be captured/recycled. Respectively, there is an active search for environmentally friendly, biodegradable alternatives for this chelator. In this study, we proposed a biodegradable chelating agent, 2-((1,2-dicarboxyethyl)amino)pentanedioic acid (IGSA). It was synthesized in accordance with the principles of "green chemistry" from readily available nonhazardous precursors using water as a solvent; in addition, the method yields literally no waste. The synthesized chelator in the form of the crude reaction mixture was further used for preparing a multicomponent micronutrient fertilizer (B, Zn, Fe, Cu, Mn, and Mo). The fertilizer was shown to be highly biodegradable (72% in 28 days), while the EDTA-based product degraded only by 13%. The plant growing efficiency was tested on lettuce in the greenhouse experiments. The results were compared against the known commercial fertilizers based on EDTA and iminodisuccinic acid (IDS). The newly developed IGSA-based fertilizer significantly outperformed the EDTA-based fertilizer in lettuce biomass (1.4 and 1.6 times for root and foliar application, respectively). The total mineral uptake was almost two times higher (1.9 and 1.8 times for root and foliar treatments, respectively) compared to the EDTA-based complex and even slightly higher (1.2 and 1.1 times, respectively) compared to the IDS-based complex. Our work opens the doors for the industrial scale production and application of this fully "green", inexpensive microelement fertilizer that has the potential to replace the EDTA-based products.


Subject(s)
Chelating Agents , Trace Elements , Edetic Acid , Fertilizers , Micronutrients , Fertilization , Soil
3.
Nanomaterials (Basel) ; 12(19)2022 Oct 10.
Article in English | MEDLINE | ID: mdl-36234671

ABSTRACT

Controlling the permittivity of dielectric composites is critical for numerous applications dealing with matter/electromagnetic radiation interaction. In this study, we have prepared polymer composites, based on a silicone elastomer matrix and Tuball carbon nanotubes (CNT) via a simple preparation procedure. The as-prepared composites demonstrated record-high dielectric permittivity both in the low-frequency range (102−107 Hz) and in the X-band (8.2−12.4 GHz), significantly exceeding the literature data for such types of composite materials at similar CNT content. Thus, with the 2 wt% filler loading, the permittivity values reach 360 at 106 Hz and >26 in the entire X-band. In similar literature, even the use of conductive polymer hosts and various highly conductive additives had not resulted in such high permittivity values. We attribute this phenomenon to specific structural features of the used Tuball nanotubes, namely their length and ability to form in the polymer matrix percolating network in the form of neuron-shaped clusters. The low cost and large production volumes of Tuball nanotubes, as well as the ease of the composite preparation procedure open the doors for production of cost-efficient, low weight and flexible composites with superior high permittivity.

4.
Molecules ; 27(17)2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36080402

ABSTRACT

The reduction of p-nitrophenol to p-aminophenol has become a benchmark reaction for testing the efficiency of new catalytic systems. In this study, we use oxidatively modified carbon (OMC) as a structural support to develop a new cost-efficient nickel-based catalytic system. The newly developed material comprises single nickel ions, chemically bound to the oxygen functional groups on the OMC surface. The highly oxidized character of OMC ensures the high lateral density of nickel ions on its surface at relatively low nickel content. We demonstrate excellent catalytic properties of the new material by using it as a stationary phase in a prototype of a continuous flow reactor: the reagent fed into the reactor is p-nitrophenol, and the product, exiting the reactor, is the fully converted p-aminophenol. The catalytic properties of the new catalyst are associated with its specific morphology, and with high lateral density of active sites on the surface. The reaction can be considered as an example of single-atom catalysis. The resulting material can be used as an inexpensive but efficient catalyst for industrial wastewater treatment. The study opens the doors for the synthesis of a new series of catalytic systems comprising transition metal atoms on the OMC structural support.


Subject(s)
Carbon , Nickel , Carbon/chemistry , Catalysis , Nickel/chemistry , Nitrophenols , Oxidation-Reduction
5.
Talanta ; 239: 123113, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34863060

ABSTRACT

Carbonaceous immunosensors are ideal nanoplatforms for developing rapid, precise, and ultra-specific diagnostic kits capable of early detection of viral infectious illnesses such as COVID-19. However, developing a proper carbonic immunosensor requires stepwise protocols to find optimum operating conditions to minimize drawbacks. Herein, for the first time and through a stepwise protocol, activation, and monoclonal IgG antibody mounting capability of multi-walled carbon nanotubes (MWCNTs) at two diverse outer diameters (ODs), viz., 20-30 nm and 50-80 nm, and graphene deriv atives (graphene oxide (GO) and reduced graphene oxide (rGO)) were examined and compared with each other toward finding the prime carbonaceous nanomaterial(s) for maximized antibody loading efficiency along with an ideal detection limit (DL) and sensitivity. Next, the effect of common amplifying agents, i.e., Au nanostars (Au NSs) and Ag nanowires (Ag NWs), on the total performance of the best carbonaceous structure was carefully assessed, and the responsible detection mechanism is investigated in detail. Next, the developed carbonaceous immunosensors were assessed via voltammetric and impedance assays, and their performances toward specific detection of SARS-CoV-2 antigen through immunoreaction were examined in detail. The study's outcome showed the superior performance of conjugated rGO-based immunosensor with Au NSs toward specific and quick (1 min) detection of SARS-CoV-2 antigen in biological fluids compared with other 1D/2D carbonaceous nanomaterials.


Subject(s)
Biosensing Techniques , COVID-19 , Graphite , Nanostructures , Nanotubes, Carbon , Electrochemical Techniques , Humans , Immunoassay , SARS-CoV-2
6.
Phys Chem Chem Phys ; 23(32): 17430-17439, 2021 Aug 28.
Article in English | MEDLINE | ID: mdl-34352062

ABSTRACT

In this study, we investigate the chemical interactions of Mn2+ ions with graphene oxides, prepared by Hummers' (HGO) and Brodie's (BGO) methods in aqueous solutions by means of NMR relaxation. Carboxyl groups, which are always present in HGO in significant quantities, are often considered as the main binding sites for metal ions. Here we demonstrate that metal ions are bound efficiently by BGO, containing a negligibly small quantity of carboxyl groups. The difference in the shape of the relaxation curves is due mostly to the difference in the solubility and exfoliation degree of the two GO samples in aqueous media. HGO binds Mn2+ in the broad pH range, including highly acidic solutions, while BGO binds only at pH > 6, since it is not dispersible in water at lower pH values. The ability of BGO to chemically bind Mn2+ despite lacking sulfate and carboxyl groups, coupled with our earlier published findings, strongly suggests that carboxyl groups do not play the main role in binding metal ions by GO, as is commonly believed. We propose that metal ions initiate a significant transformation in the GO structure to attain the most efficient coordination of metal ions. This reorganization might involve the metal cation induced C-C bond cleavage with the formation of enols at the newly formed edges.

7.
Langmuir ; 35(41): 13469-13479, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31497958

ABSTRACT

Despite enormous interest toward graphene oxide (GO) from the research community, surprisingly, little is known about its solutions. In particular, the questions related to the structure of the GO/liquid interface have not been yet properly addressed. In this report, we use a simple but efficient experimental approach to investigate the distribution of the four metal cations Na+, Cs+, Ni2+, and Gd3+ at the GO/water interface. We demonstrate that the concentration of the cations decreases exponentially with the distance from the GO surface. Such distribution for colloid systems was theoretically predicted and commonly accepted for a century but, to the best of our knowledge, has been never proved experimentally. We further demonstrate that the shape of the counterion distribution profiles depends on the pH of solution and on the fine chemical structure of GO. In particular, organic sulfates and vinylogous acids that are ionizable at different pH levels are responsible for the difference in the shapes of the concentration profiles. Unlike classical colloid systems, the diffuse layer in the GO solutions is rather broad (30-55 nm), and the concentration gradient is registered even at distances of >55 nm from the GO surface, which is typically considered as the bulk solution. The latter observation is explained by the immobilized character of the GO flakes in the nematic phase, impeding the flow of liquid and the migration of hydrated metal cations. This helps to establish and maintain the long-range concentration gradient in the space between the two parallel neighboring GO flakes. Based on the new findings and on the previously reported data, we formulate some basic principles of GO solutions.

8.
ACS Appl Mater Interfaces ; 10(46): 40024-40031, 2018 Nov 21.
Article in English | MEDLINE | ID: mdl-30370760

ABSTRACT

Graphene oxide (GO) aqueous solutions are known to form liquid crystals that can switch in electric fields. Magnetic fields as external stimuli are inefficient toward GO because of its diamagnetic properties, and GO is known to be insoluble in most of the organic solvents. In this study, composites of GO with oleate-protected magnetite nanoparticles were prepared as stable colloid solutions in the mixed isopropanol-chloroform solvents. The structure of the composite particles and the optical properties of their solutions can be controlled by the ratio of the mixing parent components. The as-prepared solutions are highly responsive to external magnetic field. As the consequence, the optical transmission and the direction of light scattering can be efficiently manipulated. These systems pave the way for fabricating functional materials, such as magneto-optical switches, density-gradient materials, and micromotors. Solubility in nonpolar organic solvents broadens the scope of their potential applications.

9.
J Am Chem Soc ; 140(29): 9051-9055, 2018 07 25.
Article in English | MEDLINE | ID: mdl-29985001

ABSTRACT

Stabilizing nanoparticles on surfaces, such as graphene, is a growing field of research. Thereby, iron particle stabilization on carbon materials is attractive and finds applications in charge-storage devices, catalysis, and others. In this work, we describe the discovery of iron nanoparticles with the face-centered cubic structure that was postulated not to exist at ambient conditions. In bulk, the γ-iron phase is formed only above 917 °C, and transforms back to the thermodynamically favored α-phase upon cooling. Here, with X-ray diffraction and Mössbauer spectroscopy we unambiguously demonstrate the unexpected room-temperature stability of the γ-phase of iron in the form of the austenitic nanoparticles with low carbon content from 0.60% through 0.93%. The nanoparticles have controllable diameter range from 30 nm through 200 nm. They are stabilized by a layer of Fe/C solid solution on the surface, serving as the buffer controlling carbon content in the core, and by a few-layer graphene as an outermost shell.

10.
J Colloid Interface Sci ; 527: 222-229, 2018 Oct 01.
Article in English | MEDLINE | ID: mdl-29800871

ABSTRACT

Graphene oxide (GO) have emerged recently as a novel material for sorbing metal cations from aqueous media. However, the literature data on sorption capacity differ by more than one order in magnitude, and the nature of the chemical bonding between GO and metal cations remains unclear. In this work we show that Gd3+ ions are bound to GO by both coordinate-covalent bonding and electrostatic attraction with prevailing the former. We provide the complete account for the GO sorption toward Gd3+ as the function of the Gd3+/GO ratio and pH of solution. The upper limits of the strong bonding are determined as 0.70 and 0.16 mmol(Gd3+)/g(GO) in the neutral and in the intrinsically acidic solutions, respectively. At large excess of Gd3+ in the neutral solutions, the sorption capacity reaches 1.45 mmol(Gd3+)/g(GO). The effectiveness of water, hydrochloric acid and EDTA as desorbing eluents is compared. We experimentally demonstrate the existence of the Gd3+ concentration gradient within the diffuse layer at the GO/water interface, and its exponential character on the distance from the GO surface. The thickness of the diffuse layer and the position of the slipping plane are estimated. Such characteristics, typical for colloid systems, show that in solutions, GO flakes form distinct phase, even though they are just one atom thick.

11.
ACS Nano ; 12(4): 3985-3993, 2018 04 24.
Article in English | MEDLINE | ID: mdl-29578700

ABSTRACT

Unzipping multiwall carbon nanotubes (MWCNTs) attracted great interest as a method for producing graphene nanoribbons (GNRs). However, depending on the production method, the GNRs have been proposed to form by different mechanisms. Here, we demonstrate that the oxidative unzipping of MWCNTs is intercalation-driven, not oxidative chemical-bond cleavage as was formerly proposed. The unzipping mechanism involves three consecutive steps: intercalation-unzipping, oxidation, and exfoliation. The reaction can be terminated at any of these three steps. We demonstrate that even in highly oxidative media one can obtain nonoxidized GNR products. The understanding of the actual unzipping mechanism lets us produce GNRs with hybrid properties varying from nonoxidized through heavily oxidized materials. We answer several questions such as the reason for the innermost walls of the nanotubes remaining zipped. The intercalation-driven reaction mechanism provides a rationale for the difficulty in unzipping single-wall and few-wall CNTs and aids in a reevaluation of the data from the oxidative unzipping process.

12.
Phys Chem Chem Phys ; 20(4): 2320-2329, 2018 Jan 24.
Article in English | MEDLINE | ID: mdl-29303182

ABSTRACT

The sorption capacity of graphene oxide (GO) toward different metal cations has been the subject of several recent studies. However, the reported quantitative data are controversial, and the mechanism of chemical bonding between GO and metal cations is poorly understood. Clarifying these questions can eventually help to reveal the fine chemical structure of GO that remains ambiguous. In this work, we study the binding of Gd3+ and Mn2+ by GO in the presence of several competing metal cations by the 1H NMR relaxation method. As a general trend, the efficiency of the metal cations to bind to GO increases with ionic charge, and depends on their ability to form coordinate-covalent bonds with GO oxygen groups. The efficiency of the competing metal cations to "replace" Gd3+ and Mn2+ increases in the order Na+ < Cs+ < Ca2+ < Sr2+ < Ga3+ < Lu3+. GO contains two different types of binding sites, bonding to which results in either high or low NMR relaxivity of the resulting Gd3+-GO and Mn2+-GO solutions. Gd3+ and Mn2+, being replaced from the high-relaxivity sites by the large excess of competing cations, are not released into the bulk solution, but only migrate to the low-relaxivity sites, remaining covalently bonded to GO. The absolute majority of the existing carboxyl groups in GO are located at tiny few-carbon-atom-vacancy defects on the major planes. The density of these vacancy defects is estimated as one per every 200 carbon atoms.

13.
Phys Chem Chem Phys ; 19(26): 17000-17008, 2017 Jul 05.
Article in English | MEDLINE | ID: mdl-28636013

ABSTRACT

One of the main advantages of graphene oxide (GO) over its non-oxidized counterpart is its ability to form stable solutions in water and some organic solvents. At the same time, the nature of GO solutions is not completely understood; the existing data are scarce and controversial. Here, we demonstrate that the solubility of GO, and the stability of the as-formed solutions depend not just on the solute and solvent cohesion parameters, as commonly believed, but mostly on the chemical interactions at the GO/solvent interface. By the DFT and QTAIM calculations, we demonstrate that the solubility of GO is afforded by strong hydrogen bonding established between GO functional groups and solvent molecules. The main functional groups taking part in hydrogen bonding are tertiary alcohols; epoxides play only a minor role. The magnitude of the bond energy values is significantly higher than that for typical hydrogen bonding. The hydrogen bond energy between GO functional groups and solvent molecules decreases in the sequence: water > methanol > ethanol. We support our theoretical results by several experimental observations including solution calorimetry. The enthalpy of GO dissolution in water, methanol and ethanol is -0.1815 ± 0.0010, -0.1550 ± 0.0012 and -0.1040 ± 0.0010 kJ g-1, respectively, in full accordance with the calculated trend. Our findings provide an explanation for the well-known, but poorly understood solvent exchange phenomenon.

14.
ACS Appl Mater Interfaces ; 9(13): 11909-11917, 2017 Apr 05.
Article in English | MEDLINE | ID: mdl-28290660

ABSTRACT

The quality of polymer composite materials depends on the distribution of the filler in the polymer matrix. Due to the presence of the oxygen functional groups, graphene oxide (GO) has a strong affinity to epoxy resins, providing potential opportunity for the uniform distribution of GO sheets in the matrix. Another advantage of GO over its nonoxidized counterpart is its ability to exfoliate to single-atomic-layer sheets in water and in some organic solvents. However, these advantages of GO have not yet been fully realized due to the lack of the methods efficiently introducing GO into the epoxy resin. Here we develop a novel homogeneous liquid phase transfer method that affords uniform distribution, and fully exfoliated condition of GO in the polymer matrix. The most pronounced alteration of properties of the cured composites is registered at the 0.10%-0.15% GO content. Addition of as little as 0.10% GO leads to the increase of the Young's modulus by 48%. Moreover, we demonstrate successful introduction of GO into the epoxy matrix containing an active diluent-modifier; this opens new venues for fabrication of improved GO-epoxy-modifier composites with a broad range of predesigned properties. The experiments done on reproducing the two literature methods, using alternative GO introduction techniques, lead to either decrease or insignificant increase of the Young's modulus of the resulting GO-epoxy composites.

15.
ACS Nano ; 10(1): 274-9, 2016 Jan 26.
Article in English | MEDLINE | ID: mdl-26580092

ABSTRACT

Successful application of graphene is hampered by the lack of cost-effective methods for its production. Here, we demonstrate a method of mass production of graphene nanoplatelets (GNPs) by exfoliation of flake graphite in the tricomponent system made by a combination of ammonium persulfate ((NH4)2S2O8), concentrated sulfuric acid, and fuming sulfuric acid. The resulting GNPs are tens of microns in diameter and 10-35 nm in thickness. When in the liquid phase of the tricomponent media, graphite completely loses its interlayer registry. This provides a ∼100% yield of GNPs from graphite in 3-4 h at room temperature or in 10 min at 120 °C.

16.
ACS Nano ; 8(3): 3060-8, 2014 Mar 25.
Article in English | MEDLINE | ID: mdl-24568241

ABSTRACT

Despite intensive research, the mechanism of graphene oxide (GO) formation remains unclear. The role of interfacial interactions between solid graphite and the liquid reaction medium, and transport of the oxidizing agent into the graphite, has not been well-addressed. In this work, we show that formation of GO from graphite constitutes three distinct independent steps. The reaction can be stopped at each step, and the corresponding intermediate products can be isolated, characterized, and stored under appropriate conditions. The first step is conversion of graphite into a stage-1 graphite intercalation compound (GIC). The second step is conversion of the stage-1 GIC into oxidized graphite, which we define as pristine graphite oxide (PGO). This step involves diffusion of the oxidizing agent into the preoccupied graphite galleries. This rate-determining step makes the entire process diffusive-controlled. The third step is conversion of PGO into conventional GO after exposure to water, which involves hydrolysis of covalent sulfates and loss of all interlayer registry.

17.
Nanoscale ; 6(6): 3059-63, 2014 Mar 21.
Article in English | MEDLINE | ID: mdl-24504060

ABSTRACT

The present study demonstrates that highly water-dispersed graphene nanoribbons dispersed by carboxyphenylated substituents and conjugated to aquated Gd(3+) ions can serve as a high-performance contrast agent (CA) for applications in T1- and T2-weighted magnetic resonance imaging (MRI) with relaxivity (r1,2) values outperforming currently-available clinical CAs by up to 16 times for r1 and 21 times for r2.


Subject(s)
Contrast Media/chemistry , Gadolinium/chemistry , Graphite/chemistry , Nanotubes, Carbon/chemistry , Water/chemistry , Ions/chemistry , Magnetic Resonance Imaging
18.
ACS Nano ; 7(3): 2773-80, 2013 Mar 26.
Article in English | MEDLINE | ID: mdl-23438444

ABSTRACT

Graphite intercalation compounds (GIC) possess a broad range of unique properties that are not specific to the parent materials. While the stage transition, changing the number of graphene layers sandwiched between the two layers of intercalant, is fundamentally important and has been theoretically addressed, experimental studies revealed only macroscopic parameters. On the microscale, the phenomenon remains elusive up to the present day. Here we monitor directly in real time the stage transitions using a combination of optical microscopy and Raman spectroscopy. These direct observations yield several mechanistic conclusions. While we obtained strong experimental evidence in support of the Daumas-Herold theory, we find that the conventional interpretation of stage transitions as sliding of the existing intercalant domains does not sufficiently capture the actual phenomena. The entire GIC structure transforms considerably during the stage transition. Among other observations, massive wavefront-like perturbations occur on the graphite surface, which we term the tidal wave effect.

19.
Chem Commun (Camb) ; 49(26): 2613-5, 2013 Apr 04.
Article in English | MEDLINE | ID: mdl-23435853

ABSTRACT

Here we demonstrate a simple, nondestructive method for the preparation of stable aqueous colloidal solutions of graphene nanoribbons and carbon nanotubes. The method includes sonication of carbon nanomaterials in hypophosphorous acid, filtration accompanied by washing the solids with water and dispersion of the solids in a fresh portion of water to form colloidal solutions.


Subject(s)
Graphite/chemistry , Nanotubes, Carbon/chemistry , Colloids/chemistry , Particle Size , Solutions , Surface Properties , Water/chemistry
20.
ACS Nano ; 7(1): 576-88, 2013 Jan 22.
Article in English | MEDLINE | ID: mdl-23215236

ABSTRACT

The existing structural models of graphene oxide (GO) contradict each other and cannot adequately explain the acidity of its aqueous solutions. Inadequate understanding of chemical structure can lead to a misinterpretation of observed experimental phenomena. Understanding the chemistry and structure of GO should enable new functionalization protocols while explaining GO's limitations due to its water instability. Here we propose an unconventional view of GO chemistry and develop the corresponding "dynamic structural model" (DSM). In contrast to previously proposed models, the DSM considers GO as a system, constantly changing its chemical structure due to interaction with water. Using potentiometric titration, (13)C NMR, FTIR, UV-vis, X-ray photoelectron microscopy, thermogravimetric analysis, and scanning electron microscopy we show that GO does not contain any significant quantity of preexisting acidic functional groups, but gradually generates them through interaction with water. The reaction with water results in C-C bond cleavage, formation of vinylogous carboxylic acids, and the generation of protons. An electrical double layer formed at the GO interface in aqueous solutions plays an important role in the observed GO chemistry. Prolonged exposure to water gradually degrades GO flakes converting them into humic acid-like structures. The proposed DSM provides an explanation for the acidity of GO aqueous solutions and accounts for most of the known spectroscopic and experimental data.


Subject(s)
Graphite/chemistry , Models, Chemical , Models, Molecular , Oxides/chemistry , Water/chemistry , Computer Simulation , Hydrogen-Ion Concentration , Molecular Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...