Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Nutr ; 153(9): 2631-2641, 2023 09.
Article in English | MEDLINE | ID: mdl-36796433

ABSTRACT

BACKGROUND: Alternative, sustainable, and adequate sources of protein must be found to meet global demand. OBJECTIVES: Our aim was to assess the effect of a plant protein blend with a good balance of indispensable amino acids and high contents of leucine, arginine, and cysteine on the maintenance of muscle protein mass and function during aging in comparison to milk proteins and to determine if this effect varied according to the quality of the background diet. METHODS: Old male Wistar rats (n = 96, 18 mo old) were randomly allocated for 4 mo to 1 of 4 diets, differing according to protein source (milk or plant protein blend) and energy content (standard, 3.6 kcal/g, with starch, or high, 4.9 kcal/g, with saturated fat and sucrose). We measured: every 2 mo, body composition and plasma biochemistry; before and after 4 mo, muscle functionality; after 4 mo, in vivo muscle protein synthesis (flooding dose of L-[1-13C]-valine) and muscle, liver, and heart weights. Two-factor ANOVA and repeated measures 2-factor ANOVA were conducted. RESULTS: There was no difference between protein type on the maintenance during aging of lean body mass, muscle mass, and muscle functionality. The high-energy diet significantly increased body fat (+47%) and heart weight (+8%) compared to the standard energy diet but had no effect on fasting plasma glucose and insulin. Muscle protein synthesis was significantly stimulated by feeding to the same extent in all groups (+13%). CONCLUSIONS: Since high-energy diets had little impact on insulin sensitivity and related metabolism, we could not test the hypothesis that in situations of higher insulin resistance, our plant protein blend may be better than milk protein. However, this rat study offers significant proof of concept from the nutritional standpoint that appropriately blended plant proteins can have high nutritional value even in demanding situations such as aging protein metabolism.


Subject(s)
Insulin Resistance , Milk Proteins , Rats , Animals , Milk Proteins/metabolism , Rats, Wistar , Plant Proteins/metabolism , Muscle, Skeletal , Adipose Tissue/metabolism , Sucrose , Muscle Proteins/metabolism
2.
Curr Dev Nutr ; 7(12): 102038, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38162999

ABSTRACT

Background: The effects of supplementation with L-arginine (L-arg), the precursor of nitric oxide (NO), on vascular and cardiometabolic health have largely been explored. Whether other mechanisms of the action of L-arg exist remains unknown, as arginine metabolism is complicated. Objective: We aimed to characterize the effect of low dose L-arg supplementation on overall human metabolism both in a fasting state and in response to an allostatic stress. Methods: In a randomized, double-blind, crossover study, 32 healthy overweight adults (mean age 45 y) with cardiometabolic risk (fasting plasma triglycerides >150 mg/dL; waist circumference >94 cm [male] or >80 cm [female]) were treated with 1.5 g sustained-release L-arg 3 times/d (4.5 g/d) or placebo for 4 wk. On the last day of treatment, volunteers consumed a high-fat meal challenge (900 kcal, 80% as fat, 13% as carbohydrate, and 7% as protein). Plasma was collected at fasting, 2, 4, and 6 h after the challenge, and the metabolome was analyzed by high-resolution liquid chromatography-mass spectrometry. Metabolic profiles were analyzed using linear mixed models-principal component analysis. Results: The challenge meal explained most of the changes in the metabolome. The overall effect of L-arg supplementation significantly explained 0.5% of the total variance, irrespective of the response to the challenge meal (P < 0.05). Among the metabolites that explain most of the L-arg effect, we found many amino acids, including branched-chain amino acids, that were decreased by L-arg supplementation. L-arg also decreased trimethylamine N-oxide (TMAO). Other changes suggest that L-arg increased methyl demand. Conclusions: Analysis of the effect of 4 wk of L-arg supplementation on the metabolome reveals important effects on methyl balance and gut microbiota activity, such as a decrease in TMAO. Further studies are needed to investigate those mechanisms and the implications of these changes for long-term health.This trial was registered at clinicaltrials.gov as NCT02354794.

3.
Int J Mol Sci ; 23(18)2022 Sep 13.
Article in English | MEDLINE | ID: mdl-36142560

ABSTRACT

The aim of the study was to investigate the effects of short-term oral administration of inorganic nitrate (NaNO3; n = 8) or placebo (NaCl; n = 9) (each 0.1 mmol/kg body weight/d for 9 days) on plasma amino acids, creatinine, and oxidative stress in healthy young men. At baseline, the plasma concentrations of amino acids did not differ between the groups. At the end of the study, the plasma concentrations of homoarginine (hArg; by 24%, p = 0.0001), citrulline and ornithine (Cit/Orn; by 16%, p = 0.015), and glutamine/glutamate (Gln/Glu; by 6%, p = 0.0003) were higher in the NaNO3 group compared to the NaCl group. The plasma concentrations of sarcosine (Sarc; by 28%, p < 0.0001), tyrosine (by 14%, p = 0.0051), phenylalanine (by 8%, p = 0.0026), and tryptophan (by 8%, p = 0.0047) were lower in the NaNO3 group compared to the NaCl group. These results suggest that nitrate administration affects amino-acid metabolism. The arginine/glycine amidinotransferase (AGAT) catalyzes two reactions: (1) the formation of l-homoarginine (hArg) and l-ornithine (Orn) from l-arginine (Arg) and l-lysine (Lys): Arg + Lys <−> hArg + Orn, with equilibrium constant Kharg; (2) the formation of guanidinoacetate (GAA) and Orn from Arg and glycine (Gly): Arg + Gly <−> GAA + Orn, with equilibrium constant Kgaa. The plasma Kgaa/KhArg ratio was lower in the NaNO3 group compared to the NaCl group (1.57 vs. 2.02, p = 0.0034). Our study suggests that supplementation of inorganic nitrate increases the AGAT-catalyzed synthesis of hArg and decreases the N-methyltransferase-catalyzed synthesis of GAA, the precursor of creatine. To our knowledge, this is the first study to demonstrate elevation of hArg synthesis by inorganic nitrate supplementation. Remarkably, an increase of 24% corresponds to the synthesis capacity of one kidney in healthy humans. Differences in the association between plasma concentrations of amino acids in the NaNO3 and NaCl groups suggest changes in amino-acid homeostasis. Plasma concentrations of the oxidative stress marker malondialdehyde (MDA) did not change after supplementation of NaNO3 or NaCl over the whole exercise time range. Plasma nitrite concentration turned out to be a more discriminant marker of NaNO3 ingestion than plasma nitrate (area under the receiver operating characteristic curve: 0.951 vs. 0.866, p < 0.0001 each).


Subject(s)
Homoarginine , Nitrates , Arginine/metabolism , Citrulline , Creatine , Creatinine , Dietary Supplements , Glutamates , Glutamine , Glycine , Homoarginine/metabolism , Humans , Lysine , Male , Malondialdehyde , Methyltransferases , Nitrites , Ornithine , Phenylalanine , Sarcosine , Sodium Chloride , Tryptophan , Tyrosine
4.
Nutrients ; 14(3)2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35276829

ABSTRACT

This review focuses on the added value provided by a research strategy applying metabolomics analyses to assess phenotypic flexibility in response to different nutritional challenge tests in the framework of metabolic clinical studies. We discuss findings related to the Oral Glucose Tolerance Test (OGTT) and to mixed meals with varying fat contents and food matrix complexities. Overall, the use of challenge tests combined with metabolomics revealed subtle metabolic dysregulations exacerbated during the postprandial period when comparing healthy and at cardiometabolic risk subjects. In healthy subjects, consistent postprandial metabolic shifts driven by insulin action were reported (e.g., a switch from lipid to glucose oxidation for energy fueling) with similarities between OGTT and mixed meals, especially during the first hours following meal ingestion while differences appeared in a wider timeframe. In populations with expected reduced phenotypic flexibility, often associated with increased cardiometabolic risk, a blunted response on most key postprandial pathways was reported. We also discuss the most suitable statistical tools to analyze the dynamic alterations of the postprandial metabolome while accounting for complexity in study designs and data structure. Overall, the in-depth characterization of the postprandial metabolism and associated phenotypic flexibility appears highly promising for a better understanding of the onset of cardiometabolic diseases.


Subject(s)
Cardiovascular Diseases , Postprandial Period , Cardiovascular Diseases/etiology , Glucose Tolerance Test , Humans , Meals , Metabolome , Postprandial Period/physiology
5.
Amino Acids ; 54(6): 967-976, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35352207

ABSTRACT

L-Lysine (Lys) and L-arginine (Arg), but not L-homoarginine (hArg), are proteinogenic amino acids. In healthy humans, oral administration of hArg increased the plasma concentration of Lys, suggesting Lys as a metabolite of hArg. In humans and animals, hArg is biosynthesized from Arg and Lys by arginine:glycine amidinotransferase (AGAT). In vitro, recombinant human arginase and bovine liver arginase I hydrolyzed hArg to Lys, suggesting Lys as a metabolite of hArg. The aim of the present study was to investigate whether changes in blood concentrations of hArg and Lys in old rats fed for 4 months with varied controlled experimental diets could suggest interconversion of these amino acids. Blood samples (n = 253) were taken before (T0) and after 2 months (T2) and 4 months (T4) of the experiment. Plasma concentrations of Lys and hArg were determined by gas chromatography-mass spectrometry. The plasma hArg concentration markedly correlated with the plasma Lys concentration at all timepoints (r ≥ 0.7, P < 0.0001). Further analysis demonstrated that hArg and Lys are closely and specifically associated independently of experimental time/rat age and diet, suggesting that hArg and Lys are mutual metabolites in old rats. Based on the plasma concentration changes, the median yield of hArg from Lys was determined to be 0.17% at T0 and each 0.27% at T2 and T4. With a circulating concentration of about 3 µM, hArg a major metabolite of Lys in healthy humans. hArg supplementation is currently investigated as a cardioprotective means to improve impaired hArg synthesis. Present knowledge suggests that Lys rather than hArg supplementation may be even more favorable.


Subject(s)
Homoarginine , Lysine , Animals , Arginase , Arginine , Cattle , Gas Chromatography-Mass Spectrometry , Rats
6.
Front Nutr ; 8: 809685, 2021.
Article in English | MEDLINE | ID: mdl-35187024

ABSTRACT

Although plant proteins are often considered to have less nutritional quality because of their suboptimal amino acid (AA) content, the wide variety of their sources, both conventional and emerging, suggests potential opportunities from complementarity between food sources. This study therefore aimed to explore whether, and to what extent, combinations of protein ingredients could reproduce an AA profile set as a nutritional objective, and to identify theoretical solutions and limitations. We collected compositional data on protein ingredients and raw plant foods (n = 151), and then ran several series of linear optimization to identify protein ingredient mixes that maximized the content in indispensable AA and reproduced various objective profiles: a "balanced profile," based on AA requirements for adults; "animal profiles" corresponding to conventional animal protein compositions, and a "cardioprotective profile," which has been associated with a lower cardiovascular risk. We assumed a very good digestibility of plant protein isolates. As expected, obtaining a balanced profile was obvious, but we also identified numerous plant protein mixtures that met demanding AA profiles. Only for particularly demanding profiles, such as mimicking a particular animal protein, did solutions require the use of protein fractions from more specific sources such as pea or canola. Optimal plant blends could mimic animal proteins such as egg white, cow milk, chicken, whey or casein with a similarity reaching 94.2, 98.8, 86.4, 92.4, and 98.0%, respectively. The limiting constraints were mainly isoleucine, lysine, and histidine target contents. These different solutions offer potential for the formulation of mixtures adapted to specific populations or the design of plant-based substitutes. Some ingredients are not commercially available but they could be developed.

7.
Nutrients ; 11(9)2019 Aug 21.
Article in English | MEDLINE | ID: mdl-31438565

ABSTRACT

The purpose of this review is to provide an overview of diets, food, and food components that affect postprandial inflammation, endothelial function, and oxidative stress, which are related to cardiometabolic risk. A high-energy meal, rich in saturated fat and sugars, induces the transient appearance of a series of metabolic, signaling and physiological dysregulations or dysfunctions, including oxidative stress, low-grade inflammation, and endothelial dysfunction, which are directly related to the amplitude of postprandial plasma triglycerides and glucose. Low-grade inflammation and endothelial dysfunction are also known to cluster together with insulin resistance, a third risk factor for cardiovascular diseases (CVD) and type-II diabetes, thus making a considerable contribution to cardiometabolic risk. Because of the marked relevance of the postprandial model to nutritional pathophysiology, many studies have investigated whether adding various nutrients and other substances to such a challenge meal might mitigate the onset of these adverse effects. Some foods (e.g., nuts, berries, and citrus), nutrients (e.g., l-arginine), and other substances (various polyphenols) have been widely studied. Reports of favorable effects in the postprandial state have concerned plasma markers for systemic or vascular pro-inflammatory conditions, the activation of inflammatory pathways in plasma monocytes, vascular endothelial function (mostly assessed using physiological criteria), and postprandial oxidative stress. Although the literature is fragmented, this topic warrants further study using multiple endpoints and markers to investigate whether the interesting candidates identified might prevent or limit the postprandial appearance of critical features of cardiometabolic risk.


Subject(s)
Cardiovascular Physiological Phenomena/drug effects , Dietary Carbohydrates , Dietary Proteins , Postprandial Period , Humans , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...