Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
Org Process Res Dev ; 27(6): 1094-1103, 2023 Jun 16.
Article in English | MEDLINE | ID: mdl-37342802

ABSTRACT

The suitability of broadband dielectric spectroscopy (DS) as a tool for in-line (in situ) reaction monitoring is demonstrated. Using the esterification of 4-nitrophenol as a test-case, we show that multivariate analysis of time-resolved DS data-collected across a wide frequency range with a coaxial dip-probe-allows reaction progress to be measured with both high precision and high accuracy. In addition to the workflows for data collection and analysis, we also establish a convenient method for rapidly assessing the applicability of DS to previously untested reactions or processes. We envisage that, given its orthogonality to other spectroscopic methods, its low cost, and its ease of implementation, DS will be a valuable addition to the process chemist's analytical toolbox.

2.
Front Bioeng Biotechnol ; 11: 1123477, 2023.
Article in English | MEDLINE | ID: mdl-36860884

ABSTRACT

We report on the ring-opening polymerization of ɛ-caprolactone incorporated with a magnetic susceptible catalyst, FeCl3, via the use of microwave magnetic heating (HH) which primarily heats the bulk with a magnetic field (H-field) from an electromagnetic field (EMF). Such a process was compared to more commonly used heating methods, such as conventional heating (CH), i.e., oil bath, and microwave electric heating (EH), which is also referred to as microwave heating that primarily heats the bulk with an electric field (E-field). We identified that the catalyst is susceptible to both the E-field and H-field heating, and promoted the heating of the bulk. Which, we noticed such promotion was a lot more significant in the HH heating experiment. Further investigating the impact of such observed effects in the ROP of ɛ-caprolactone, we found that the HH experiments showed a more significant improvement in both the product Mwt and yield as the input power increased. However, when the catalyst concentration was reduced from 400:1 to 1600:1 (Monomer:Catalyst molar ratio), the observed differentiation in the Mwt and yield between the EH and the HH heating methods diminished, which we hypothesized to be due to the limited species available that were susceptible to microwave magnetic heating. But comparable product results between the HH and EH heating methods suggest that the HH heating method along with a magnetic susceptible catalyst could be an alternative solution to overcome the penetration depth problem associated with the EH heating methods. The cytotoxicity of the produced polymer was investigated to identify its potential application as biomaterials.

3.
Foods ; 10(8)2021 Aug 16.
Article in English | MEDLINE | ID: mdl-34441679

ABSTRACT

Non-uniform temperature distribution within solid food is a major problem associated with microwave heating, which limits industrial applications. Therefore, an experimentally validated 3D model was proposed to study the effect of microwave applicator geometry on the electromagnetic field distribution and heating pattern of shrimp under different processing conditions. Simulation results were compared with physical experiments, in which a cooked peeled shrimp sample was heated using two different laboratory-scale microwave applicators (rectangular and cylindrical cavities). For the rectangular applicator, the temperature distribution within the shrimp, when examined in cross-section, was more homogeneous compared to that of the cylindrical applicator. The results showed the influence of the complex shape of the food on the temperature distribution during microwave heating, as well as of process parameters (input power and geometry cavity). Moreover, this modelling method could provide a better understanding of the microwave heating process and assist manufacturing companies to evaluate a suitable microwave applicator according to their specific purpose.

4.
Adv Mater ; 31(49): e1903513, 2019 Dec.
Article in English | MEDLINE | ID: mdl-31583791

ABSTRACT

Synthetic materials are an everyday component of modern healthcare yet often fail routinely as a consequence of medical-device-centered infections. The incidence rate for catheter-associated urinary tract infections is between 3% and 7% for each day of use, which means that infection is inevitable when resident for sufficient time. The O'Neill Review on antimicrobial resistance estimates that, left unchecked, ten million people will die annually from drug-resistant infections by 2050. Development of biomaterials resistant to bacterial colonization can play an important role in reducing device-associated infections. However, rational design of new biomaterials is hindered by the lack of quantitative structure-activity relationships (QSARs). Here, the development of a predictive QSAR is reported for bacterial biofilm formation on a range of polymers, using calculated molecular descriptors of monomer units to discover and exemplify novel, biofilm-resistant (meth-)acrylate-based polymers. These predictions are validated successfully by the synthesis of new monomers which are polymerized to create coatings found to be resistant to biofilm formation by six different bacterial pathogens: Pseudomonas aeruginosa, Proteus mirabilis, Enterococcus faecalis, Klebsiella pneumoniae, Escherichia coli, and Staphylococcus aureus.


Subject(s)
Anti-Bacterial Agents/pharmacology , Biocompatible Materials/pharmacology , Biofilms/drug effects , Polymers/pharmacology , Anti-Bacterial Agents/chemistry , Bacteria/drug effects , Bacterial Infections/prevention & control , Biocompatible Materials/chemistry , Biofouling/prevention & control , Humans , Polymers/chemistry , Structure-Activity Relationship
5.
Chempluschem ; 84(7): 786-793, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31943995

ABSTRACT

An oxalate-bridged binuclear iron(III) ionic liquid combined with an imidazolium based cation, (dimim)2 [Fe2 Cl4 (µ-ox)], was synthesized and characterized by a wide range of techniques. This halometallate ionic liquid was active in catalyzing the depolymerization of polyethylene terephthalate (PET) by glycolysis, under conventional and microwave-assisted heating conditions. Both methodologies were very selective towards the production of bis(2-hydroxyethyl)terephthalate (BHET). The employment of microwave heating proved beneficial in terms of time and energy saving when compared to the use of thermal heating. Indeed, dielectric spectroscopy studies revealed that the binuclear iron-containing ionic liquid exhibits an excellent heating response under an electromagnetic field. The catalyst provided quantitative conversions to BHET in the glycolysis of post-consumer PET bottles in only 3 h through microwave heating, as compared to 80 % conversion after 24 h under conventional heating.

6.
Phys Chem Chem Phys ; 19(31): 20412-20419, 2017 Aug 09.
Article in English | MEDLINE | ID: mdl-28731101

ABSTRACT

Microwave annealing has emerged as an alternative to traditional thermal annealing approaches for optimising block copolymer self-assembly. A novel sample environment enabling small angle X-ray scattering to be performed in situ during microwave annealing is demonstrated, which has enabled, for the first time, the direct study of the effects of microwave annealing upon the self-assembly behavior of a model, commercial triblock copolymer system [polystyrene-block-poly(ethylene-co-butylene)-block-polystyrene]. Results show that the block copolymer is a poor microwave absorber, resulting in no change in the block copolymer morphology upon application of microwave energy. The block copolymer species may only indirectly interact with the microwave energy when a small molecule microwave-interactive species [diethylene glycol dibenzoate (DEGDB)] is incorporated directly into the polymer matrix. Then significant morphological development is observed at DEGDB loadings ≥6 wt%. Through spatial localisation of the microwave-interactive species, we demonstrate targeted annealing of specific regions of a multi-component system, opening routes for the development of "smart" manufacturing methodologies.

7.
Macromol Rapid Commun ; 37(15): 1295-9, 2016 Aug.
Article in English | MEDLINE | ID: mdl-27315130

ABSTRACT

The use of dielectric property measurements to define specific trends in the molecular structures of poly(caprolactone) containing star polymers and/or the interbatch repeatability of the synthetic procedures used to generate them is demonstrated. The magnitude of the dielectric property value is shown to accurately reflect: (a) the number of functional groups within a series of materials with similar molecular size when no additional intermolecular order is present in the medium, (b) the polymer molecular size for a series of materials containing a fixed core material and so functional group number, and/or (c) the batch to batch repeatability of the synthesis method. The dielectric measurements are validated by comparison to spectroscopic/chromatographic data.


Subject(s)
Biocompatible Materials/chemical synthesis , Polyesters/chemical synthesis , Surface-Active Agents/chemical synthesis , Dielectric Spectroscopy , Molecular Structure , Temperature
8.
J Sci Food Agric ; 96(13): 4440-8, 2016 Oct.
Article in English | MEDLINE | ID: mdl-26841248

ABSTRACT

BACKGROUND: The effective porosity is an important quantitative parameter for food products that has a significant effect on taste and quality. It is challenging to quantify the apparent porosity of fried potato crisps as they have a thin irregularly shaped cross section containing oil and water. This study uses a novel micro-CT technique to determine the solid volume fraction and hence the effective porosity of three types of potato crisps: standard continuously fried crisps, microwaved crisps, and continuously fried 'kettle' crisps. RESULTS: It was found that continuously fried kettle crisps had the lowest effective porosity at 0.54, providing the desired crunchy taste and lower oil contents. Crisps produced using a microwave process designed to mimic the dehydration process of standard continuous fried crisps had an effective porosity of 0.65, which was very similar to the effective porosity of 0.63 for standard continuously fried crisps. The results were supported by the findings of a forced preference consumer test. CONCLUSION: The effective porosity affects the product taste and is therefore a critical parameter. This study shows that micro-CT analysis can be used to characterise the change in effective porosity of a thin irregularly shaped food product, caused by a change of cooking procedure. © 2016 Society of Chemical Industry.


Subject(s)
Cooking , Fast Foods/analysis , Food Inspection/methods , Food Quality , Plant Tubers/chemistry , Solanum tuberosum/chemistry , Algorithms , Consumer Behavior , Dietary Fats, Unsaturated/analysis , England , Fast Foods/radiation effects , Food Preferences , Humans , Mechanical Phenomena/radiation effects , Microtechnology , Microwaves/adverse effects , Plant Oils/analysis , Plant Oils/chemistry , Plant Tubers/radiation effects , Porosity/radiation effects , Sensation , Solanum tuberosum/radiation effects , Taste , Tomography, X-Ray Computed
9.
Molecules ; 20(11): 20131-45, 2015 Nov 09.
Article in English | MEDLINE | ID: mdl-26569198

ABSTRACT

Macromolecules that possess three-dimensional, branched molecular structures are of great interest because they exhibit significantly differentiated application performance compared to conventional linear (straight chain) polymers. This paper reports the synthesis of 3- and 4-arm star branched polymers via ring opening polymerisation (ROP) utilising multi-functional hydroxyl initiators and Sn(Oct)2 as precatalyst. The structures produced include mono-functional hydrophobic and multi-functional amphiphilic core corona stars. The characteristics of the synthetic process were shown to be principally dependent upon the physical/dielectric properties of the initiators used. ROP's using initiators that were more available to become directly involved with the Sn(Oct)2 in the "in-situ" formation of the true catalytic species were observed to require shorter reaction times. Use of microwave heating (MWH) in homopolymer star synthesis reduced reaction times compared to conventional heating (CH) equivalents, this was attributed to an increased rate of "in-situ" catalyst formation. However, in amphiphilic core corona star formation, the MWH polymerisations exhibited slower propagation rates than CH equivalents. This was attributed to macro-structuring within the reaction medium, which reduced the potential for reaction. It was concluded that CH experiments were less affected by this macro-structuring because it was disrupted by the thermal currents/gradients caused by the conductive/convective heating mechanisms. These gradients are much reduced/absent with MWH because it selectively heats specific species simultaneously throughout the entire volume of the reaction medium. These partitioning problems were overcome by introducing additional quantities of the species that had been determined to selectively heat.


Subject(s)
Polyesters/chemistry , Polymers/chemistry , Chemistry Techniques, Synthetic , Hydrophobic and Hydrophilic Interactions , Molecular Structure , Polymerization , Polymers/chemical synthesis , Temperature
10.
Phys Chem Chem Phys ; 12(36): 10793-800, 2010 Sep 28.
Article in English | MEDLINE | ID: mdl-20625593

ABSTRACT

There is a growing body of literature which reports the use of silicon carbide vessels to shield reaction mixtures during microwave heating. In this paper we use electromagnetic simulations and microwave experiments to show that silicon carbide vessels do not exclude the electric field, and that dielectric heating of reaction mixtures will take place in addition to heat transfer from the silicon carbide. The contribution of dielectric heating and heat transfer depends on the dielectric properties of the mixture, and the temperature at which the reaction is carried out. Solvents which remain microwave absorbent at high temperatures, such as ionic liquids, will heat under the direct influence of the electric field from 30-250 degrees C. Solvents which are less microwave absorbent at higher temperatures will be heated by heat-transfer only at temperatures in excess of 150 degrees C. The results presented in this paper suggest that the influence of the electric field cannot be neglected when interpreting microwave assisted synthesis experiments in silicon carbide vessels.

11.
Phys Chem Chem Phys ; 12(18): 4750-8, 2010 May 14.
Article in English | MEDLINE | ID: mdl-20428555

ABSTRACT

This paper explains the phenomena which occur in commercially available laboratory microwave equipment, and highlights several situations where experimental observations are often misinterpreted as a 'microwave effect'. Electromagnetic simulations and heating experiments were used to show the quantitative effects of solvent type, solvent volume, vessel material, vessel internals and stirring rate on the distribution of the electric field, the power density and the rate of heating. The simulations and experiments show how significant temperature gradients can exist within the heated materials, and that very different results can be obtained depending on the method used to measure temperature. The overall energy balance is shown for a number of different solvents, and the interpretation and implications of using the results from commercially available microwave equipment are discussed.


Subject(s)
Hot Temperature , Microwaves , Models, Chemical , Electromagnetic Fields , Heating , Solvents/chemistry , Temperature
12.
Phys Chem Chem Phys ; 10(20): 2947-51, 2008 May 28.
Article in English | MEDLINE | ID: mdl-18473042

ABSTRACT

The presence of water can have a significant influence upon both the physical and dielectric properties of ionic liquids and consequently their ability to interact with microwaves. Herein we show that complex permittivity initially decreases as low concentrations of water are added to the system, the continued addition of water gives rise to an inversion in this trend. We propose that this minimum point may be used to identify water dimer formation.


Subject(s)
Ionic Liquids/chemistry , Spectrum Analysis/instrumentation , Spectrum Analysis/methods , Water/chemistry , Microwaves , Reproducibility of Results , Sensitivity and Specificity , Water/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...