Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Mater Sci Eng C Mater Biol Appl ; 93: 49-60, 2018 Dec 01.
Article in English | MEDLINE | ID: mdl-30274082

ABSTRACT

Copper nanoparticles (Cu NPs) have proven to own excellent antimicrobial efficacy, but the problems of easy oxidation and aggregation limit their practical application. Here, nanocomposite based on polyaniline (PANI) and Cu NPs solved this problem and brought additional physicochemical properties that are markedly advantageous for antimicrobial applications. Current work exploits this potential, to examine its time- and concentration-dependent antimicrobial activity, employing E. coli, S. aureus, and C. albicans as a model microbial species. Regarding the presence of polaronic charge carriers in the fibrous polyaniline network, effects of Cu NPs' size and their partially oxidized surfaces (the data were confirmed by HRTEM, FESEM, XRD, Raman and XPS analysis), as well as rapid copper ions release, Cu-PANI nanocomposite showed efficient bactericidal and fungicidal activities at the concentrations ≤1 ppm, within the incubation time of 2 h. Beside the quantitative analysis, the high levels of cellular disruption for all tested microbes were evidenced by atomic force microscopy. Moreover, the minimum inhibitory and bactericidal concentrations of the Cu-PANI nanocomposite were lower than those reported for other nanocomposites. Using such low concentrations is recognized as a good way to avoid its toxicity toward the environment. For this purpose, Cu-PANI nanocomposite is tested for its genotoxicity and influence on the oxidative status of the human cells in vitro.


Subject(s)
Aniline Compounds , Anti-Infective Agents , Blood Cells/metabolism , Copper , DNA Damage , Escherichia coli/growth & development , Nanocomposites , Staphylococcus aureus/growth & development , Aniline Compounds/chemistry , Aniline Compounds/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Blood Cells/cytology , Copper/chemistry , Copper/pharmacology , Drug Evaluation, Preclinical , Humans , Nanocomposites/chemistry , Nanocomposites/therapeutic use
2.
Carbohydr Polym ; 184: 207-213, 2018 Mar 15.
Article in English | MEDLINE | ID: mdl-29352913

ABSTRACT

The aim of this study was to develop dextran-based edible films plasticized by sorbitol. In order to optimise the film-forming formulation, response surface methodology was used. The influence of dextran and sorbitol concentration on the mechanical and water vapour barrier properties of obtained films was investigated. The results showed that both parameters exhibited significant effect on the water vapour permeability of a film. Both dextran and sorbitol concentration had significant influence on tensile strength and elongation at break, whereas only sorbitol concentration had significant effect on Young's modulus. After optimisation by desirability approach, it was found that a film made of 3.40 wt% of dextran and 20.43 wt% of sorbitol showed the lowest water vapour permeability and the highest tensile strength and elasticity.


Subject(s)
Dextrans/chemistry , Leuconostoc mesenteroides/chemistry , Sorbitol/chemistry , Plasticizers/chemistry , Steam , Tensile Strength
3.
Colloids Surf B Biointerfaces ; 160: 184-191, 2017 Dec 01.
Article in English | MEDLINE | ID: mdl-28934661

ABSTRACT

A simple, fast and non-costly method for selective cysteine (Cys) detection, based on optical changes of silver colloids, is developed. For that purpose, stable colloids consisting of silver nanoparticles (Ag NPs) coated with polysaccharide dextran (Dex), isolated from bacterium species Leuconostoc mesenteroides T3, were prepared. The synthesized samples were thoroughly characterized including absorption and FTIR spectroscopy, as well as transmission electron microscopy and X-ray diffraction analysis. The silver colloids display high sensitivity and selectivity towards Cys detection in aqueous solutions. The Ag NPs coated with Dex provide possibility to detect Cys among a dozen amino acids and its detection limit was found to be 12.0µM. The sensing mechanism - red shift of optical absorption - is discussed in terms of the agglomeration of Ag NPs due to formation of hydrogen bonds between Cys molecules attached to different Ag NPs.


Subject(s)
Cysteine/analysis , Glucosyltransferases/chemistry , Metal Nanoparticles/chemistry , Silver/chemistry , Colloids , Glucosyltransferases/isolation & purification , Leuconostoc mesenteroides/chemistry , Limit of Detection , Metal Nanoparticles/ultrastructure , Solutions , Spectroscopy, Fourier Transform Infrared
4.
N Biotechnol ; 39(Pt A): 150-159, 2017 Oct 25.
Article in English | MEDLINE | ID: mdl-28263898

ABSTRACT

The objective of this study was to investigate the modification of materials used in wastewater treatment for possible antimicrobial application(s). Granulated activated carbon (GAC) and natural clinoptilolite (CLI) were activated using Cu2+- and Zn2+- ions and the disinfection ability of the resulting materials was tested. Studies of the sorption and desorption kinetics were performed in order to determine and clarify the antimicrobial activity of the metal-activated sorbents. The exact sorption capacities of the selected sorbents, GAC and CLI, activated through use of Cu2+- ions, were 15.90 and 3.60mg/g, respectively, while for the materials activated by Zn2+- ions, the corresponding capacities were 14.00 and 4.72mg/g,. The desorption rates were 2 and 3 orders of magnitude lower than their sorption efficacy for the Cu2+-, and Zn2+-activated sorbents, respectively. The intermediate sorption capacity and low desorption rate indicated that the overall antimicrobial activity of the metal-modified sorbents was a result of metal ions immobilized onto surface sites. The effect of antimicrobial activity of free ions desorbed from the metal-activated surface may thus be disregarded. The antimicrobial activities of Cu/GAC, Zn/GAC, Cu/CLI and Zn/CLI were also tested against Escherichia coli, Staphylococcus aureus, and Candida albicans. After 15min exposure, the highest levels of cell inactivation were obtained through the Cu/CLI and the Cu/GAC against E. coli, 100.0 and 98.24%, respectively. However, for S. aureus and yeast cell inactivation, all Cu2+- and Zn2+-activated sorbents proved to be unsatisfactory. A characterization of the sorbents was performed by X-ray diffraction (XRD), X-ray photo electron spectroscopy (XPS), and field emission scanning electron microscopy (FE-SEM). A concentration of the adsorbed and released ions was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES) and mass spectrometry (ICP-MS). The results showed that the antimicrobial performance of the activated sorbents depended on the surface characteristics of the material, which itself designates the distribution and the bioavailability of the activating agent.


Subject(s)
Anti-Infective Agents/pharmacology , Cations, Divalent/pharmacology , Copper/pharmacology , Zinc/pharmacology , Adsorption , Candida albicans/drug effects , Charcoal/pharmacology , Escherichia coli/drug effects , Microbial Sensitivity Tests , Photoelectron Spectroscopy , Staphylococcus aureus/drug effects , X-Ray Diffraction , Zeolites/pharmacology
5.
Carbohydr Polym ; 157: 981-990, 2017 Feb 10.
Article in English | MEDLINE | ID: mdl-27988017

ABSTRACT

In this study, pectin based films including different amounts of sodium alginate were prepared by casting method. All the films, with and without polyglycerol as plasticizer, were crosslinked with zinc ions in order to extend their potential functionality. The development of junction points, occurring during the crosslinking process with zinc ions, induced the increasing of free volume with following changing in chemico-physical properties of films. The inclusion of alginate in pectin based formulations improved the strength of zinc ions crosslinking network, whereas the addition of polyglycerol significantly improved mechanical performance. Finally, zinc-crosslinked films evidenced antimicrobial activity against the most common exploited pathogens: Staphylococcus Aureus, Escherichia Coli and Candida Albicans. These results suggest that zinc-crosslinked based films can be exploitable as novel bio-active biomaterials for protection and disinfection of medical devices.


Subject(s)
Alginates/chemistry , Anti-Infective Agents/chemistry , Pectins/chemistry , Candida albicans , Escherichia coli , Glucuronic Acid/chemistry , Hexuronic Acids/chemistry , Staphylococcus aureus
6.
Carbohydr Polym ; 131: 331-6, 2015 Oct 20.
Article in English | MEDLINE | ID: mdl-26256192

ABSTRACT

This study was aimed to highlight the possibility of cotton fabric impregnation with silver nanoparticles synthesized by dextran isolated from Leuconostoc mesenteroides T3 in order to obtain antimicrobial properties. The fabrication of dextran was proved by FTIR spectroscopy. Particle sizes of synthesized dextran and silver nanoparticles were measured by dynamic light scattering method. The presence of silver nanoparticles on the surface of cotton fabric was confirmed by scanning electron microscopy, X-ray diffraction measurements and reflectance spectrophotometry. Antimicrobial activity of cotton fabric impregnated with silver nanoparticles was tested against bacteria Escherichia coli and Staphylococcus aureus, and fungus Candida albicans. The results indicated that synthesized silver nanoparticles can provide satisfactory antimicrobial activity. However, maximum reduction (99.9%) of all tested microorganisms can be obtained only when 1.0mmolL(-1) colloid consisting of silver nanoparticles is applied.


Subject(s)
Cotton Fiber , Dextrans/isolation & purification , Leuconostoc/metabolism , Metal Nanoparticles/chemistry , Silver/chemistry , Anti-Infective Agents/pharmacology , Bacteria/drug effects , Dynamic Light Scattering , Fungi/drug effects , Microbial Sensitivity Tests , Spectroscopy, Fourier Transform Infrared , X-Ray Diffraction
7.
ACS Appl Mater Interfaces ; 7(3): 1955-66, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25552193

ABSTRACT

This study explores different mechanisms of antimicrobial action by designing hybrid nanomaterials that provide a new approach in the fight against resistant microbes. Here, we present a cheap copper-polyaniline (Cu-PANI) nanocomposite material with enhanced antimicrobial properties, prepared by simple in situ polymerization method, when polymer and metal nanoparticles are produced simultaneously. The copper nanoparticles (CuNPs) are uniformly dispersed in the polymer and have a narrow size distribution (dav = 6 nm). We found that CuNPs and PANI act synergistically against three strains, Escherichia coli, Staphylococcus aureus, and Candida albicans, and resulting nanocomposite exhibits higher antimicrobial activity than any component acting alone. Before using the colony counting method to quantify its time and concentration antimicrobial activity, different techniques (UV-visible spectroscopy, transmission electron microscopy, scanning electron microscope, field emission scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectrophotometry, and inductively coupled plasma optical emission spectrometry) were used to identify the optical, structural, and chemical aspects of the formed Cu-PANI nanocomposite. The antimicrobial activity of this nanocomposite shows that the microbial growth has been fully inhibited; moreover, some of the tested microbes were killed. Atomic force microscopy revealed dramatic changes in morphology of tested cells due to disruption of their cell wall integrity after incubation with Cu-PANI nanocomposite.


Subject(s)
Aniline Compounds/pharmacology , Anti-Infective Agents/pharmacology , Copper/pharmacology , Nanocomposites/chemistry , Aniline Compounds/chemistry , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/chemistry , Candida albicans/drug effects , Copper/chemistry , Escherichia coli/drug effects , Microbial Sensitivity Tests , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...