Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Accid Anal Prev ; 152: 106007, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33556654

ABSTRACT

Traffic conflicts are heavily correlated with traffic collisions and may provide insightful information on the failure mechanism and factors that contribute more towards a collision. Although proactive traffic management systems have been supported heavily in the research community, and autonomous vehicles (AVs) are soon to become a reality, analyses are concentrated on very specific environments using aggregated data. This study aims at investigating -for the first time- rear-end conflict frequency in an urban network level using vehicle-to-vehicle interactions and at correlating frequency with the corresponding network traffic state. The Time-To-Collision (TTC) and Deceleration Rate to Avoid Crash (DRAC) metrics are utilized to estimate conflict frequency on the current network situation, as well as on scenarios including AV characteristics. Three critical conflict points are defined, according to TTC and DRAC thresholds. After extracting conflicts, data are fitted into Zero-inflated and also traditional Negative Binomial models, as well as quasi-Poisson models, while controlling for endogeneity, in order to investigate contributory factors of conflict frequency. Results demonstrate that conflict counts are significantly higher in congested traffic and that high variations in speed increase conflicts. Nevertheless, a comparison with simulated AV traffic and the use of more surrogate safety indicators could provide more insight into the relationship between traffic state and traffic conflicts in the near future.


Subject(s)
Accidents, Traffic/statistics & numerical data , Automobile Driving , Models, Statistical , Acceleration , Accidents, Traffic/prevention & control , Cities , Humans , Poisson Distribution , Safety , Time Factors
2.
J Air Transp Manag ; 85: 101819, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32501381

ABSTRACT

As the global population increases and transportation connectivity improves in quality and prices, the demand for mobility increases, especially in long-haul services. According to the 2017 report of the European Commission in Mobility and Transport, the performance of all modes for passenger transport (roadways and airways) are reaching record highs. Although the benefits of the increased demand for mobility are substantial and welcome, an effort should be paid such as to ameliorate possible threatening side-effects that may also arise. As World Health Organization (WHO) denotes and as has been evident from the global COVID-19 epidemic outbreak, infectious diseases can be spread directly or indirectly from one person to another under common exposure circumstances such as air transportation (especially long-haul airline connections) that may act as the medium for transmitting and spreading infectious diseases. In this paper, analytical and realistic models have been integrated, for providing evidence on the spread dynamics of infectious diseases that may face Europe through the airlines system. In particular, a detailed epidemiological model has been integrated with the airlines' and land transport network, able to simulate the epidemic spread of infectious diseases originated from distant locations. Additionally, a wide set of experiments and simulations have been conducted, providing results from detailed stress-tests covering both mild as well as aggressive cases of epidemic spreading scenarios. The results provide convincing evidence on the effectiveness that the European airports' system offer in controlling the emergence of epidemics, but also on the time and extent that controlling measures should be taken in order to break the chain of infections in realistic cases.

3.
Accid Anal Prev ; 130: 38-53, 2019 Sep.
Article in English | MEDLINE | ID: mdl-29429548

ABSTRACT

Given the importance of rigorous quantitative reasoning in supporting national, regional or global road safety policies, data quality, reliability, and stability are of the upmost importance. This study focuses on macroscopic properties of road safety statistics and the temporal stability of these statistics at a global level. A thorough investigation of two years of measurements was conducted to identify any unexpected gaps that could highlight the existence of inconsistent measurements. The database used in this research includes 121 member countries of the United Nation (UN-121) with a population of at least one million (smaller country data shows higher instability) and includes road safety and socioeconomic variables collected from a number of international databases (e.g. WHO and World Bank) for the years 2010 and 2013. For the fulfillment of the earlier stated goal, a number of data visualization and exploratory analyses (Hierarchical Clustering and Principal Component Analysis) were conducted. Furthermore, in order to provide a richer analysis of the data, we developed and compared the specification of a number of Structural Equation Models for the years 2010 and 2013. Different scenarios have been developed, with different endogenous variables (indicators of mortality rate and fatality risk) and structural forms. The findings of the current research indicate inconsistency phenomena in global statistics of different instances/years. Finally, the results of this research provide evidence on the importance of careful and systematic data collection for developing advanced statistical and econometric techniques and furthermore for developing road safety policies.


Subject(s)
Accidents, Traffic/statistics & numerical data , Data Accuracy , Safety/statistics & numerical data , Databases, Factual , Humans , Policy , Reproducibility of Results , Spatial Analysis
4.
Accid Anal Prev ; 130: 1-2, 2019 09.
Article in English | MEDLINE | ID: mdl-30005814
5.
Accid Anal Prev ; 118: 221-235, 2018 Sep.
Article in English | MEDLINE | ID: mdl-29502853

ABSTRACT

Rear-end crashes are one of the most frequently occurring crash types, especially in urban networks. An understanding of the contributing factors and their significant association with rear-end crashes is of practical importance and will help in the development of effective countermeasures. The objective of this study is to assess rear-end crash potential at a microscopic level in an urban environment, by investigating vehicle-by-vehicle interactions. To do so, several traffic parameters at the individual vehicle level have been taken into consideration, for capturing car-following characteristics and vehicle interactions, and to investigate their effect on potential rear-end crashes. In this study rear-end crash potential was estimated based on stopping distance between two consecutive vehicles, and four rear-end crash potential cases were developed. The results indicated that 66.4% of the observations were estimated as rear-end crash potentials. It was also shown that rear-end crash potential was presented when traffic flow and speed standard deviation were higher. Also, locational characteristics such as lane of travel and location in the network were found to affect drivers' car following decisions and additionally, it was shown that speeds were lower and headways higher when Heavy Goods Vehicles lead. Finally, a model-based behavioral analysis based on Multinomial Logit regression was conducted to systematically identify the statistically significant variables in explaining rear-end risk potential. The modeling results highlighted the significance of the explanatory variables associated with rear-end crash potential, however it was shown that their effect varied among different model configurations. The outcome of the results can be of significant value for several purposes, such as real-time monitoring of risk potential, allocating enforcement units in urban networks and designing targeted proactive safety policies.


Subject(s)
Accidents, Traffic , Automobile Driving , Environment , Motor Vehicles , Risk-Taking , Urban Population , Deceleration , Decision Making , Humans , Risk
SELECTION OF CITATIONS
SEARCH DETAIL
...