Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
Add more filters










Publication year range
1.
Eur J Neurosci ; 58(9): 3981-4001, 2023 11.
Article in English | MEDLINE | ID: mdl-37727025

ABSTRACT

Most individuals experience their dominant arm as being more dexterous than the non-dominant arm, but the neural mechanisms underlying this asymmetry in motor behaviour are unclear. Using a delayed-reach task, we have recently demonstrated strong goal-directed tuning of stretch reflex gains in the dominant upper limb of human participants. Here, we used an equivalent experimental paradigm to address the neural mechanisms that underlie the preparation for reaching movements with the non-dominant upper limb. There were consistent effects of load, preparatory delay duration and target direction on the long latency stretch reflex. However, by comparing stretch reflex responses in the non-dominant arm with those previously documented in the dominant arm, we demonstrate that goal-directed tuning of short and long latency stretch reflexes is markedly weaker in the non-dominant limb. The results indicate that the motor performance asymmetries across the two upper limbs are partly due to the more sophisticated control of reflexive stiffness in the dominant limb, likely facilitated by the superior goal-directed control of muscle spindle receptors. Our findings therefore suggest that fusimotor control may play a role in determining performance of complex motor behaviours and support existing proposals that the dominant arm is better supplied than the non-dominant arm for executing more complex tasks, such as trajectory control.


Subject(s)
Goals , Reflex, Stretch , Humans , Reflex, Stretch/physiology , Movement/physiology , Upper Extremity , Muscle, Skeletal/physiology , Electromyography , Reflex/physiology
2.
J Neurophysiol ; 130(2): 319-331, 2023 08 01.
Article in English | MEDLINE | ID: mdl-37380602

ABSTRACT

Motor adaptation to novel dynamics occurs rapidly using sensed errors to update the current motor memory. This adaption is strongly driven by proprioceptive and visual signals that indicate errors in the motor memory. Here, we extend this previous work by investigating whether the presence of additional visual cues could increase the rate of motor adaptation, specifically when the visual motion cue is congruent with the dynamics. Six groups of participants performed reaching movements while grasping the handle of a robotic manipulandum. A visual cue (small red circle) was connected to the cursor (representing the hand position) via a thin red bar. After a baseline, a unidirectional (3 groups) or bidirectional (3 groups) velocity-dependent force field was applied during the reach. For each group, the movement of the red object relative to the cursor was either congruent with the force field dynamics, incongruent with the force field dynamics, or constant (fixed distance from the cursor). Participants adapted more to the unidirectional force fields than to the bidirectional force field groups. However, across both force fields, groups in which the visual cues matched the type of force field (congruent visual cue) exhibited higher final adaptation level at the end of learning than the control or incongruent conditions. In all groups, we observed that an additional congruent cue assisted the formation of the motor memory of the external dynamics. We then demonstrate that a state estimation-based model that integrates proprioceptive and visual information can successfully replicate the experimental data.NEW & NOTEWORTHY We demonstrate that adaptation to novel dynamics is stronger when additional online visual cues that are congruent with the dynamics are presented during adaptation, compared with either a constant or incongruent visual cue. This effect was found regardless of whether a bidirectional or unidirectional velocity-dependent force field was presented to the participants. We propose that this effect might arise through the inclusion of this additional visual cue information within the state estimation process.


Subject(s)
Cues , Psychomotor Performance , Humans , Learning , Adaptation, Physiological , Movement
3.
eNeuro ; 10(2)2023 02.
Article in English | MEDLINE | ID: mdl-36781230

ABSTRACT

Voluntary movements are prepared before they are executed. Preparatory activity has been observed across the CNS and recently documented in first-order neurons of the human PNS (i.e., in muscle spindles). Changes seen in sensory organs suggest that independent modulation of stretch reflex gains may represent an important component of movement preparation. The aim of the current study was to further investigate the preparatory modulation of short-latency stretch reflex responses (SLRs) and long-latency stretch reflex responses (LLRs) of the dominant upper limb of human subjects. Specifically, we investigated how different target parameters (target distance and direction) affect the preparatory tuning of stretch reflex gains in the context of goal-directed reaching, and whether any such tuning depends on preparation duration and the direction of background loads. We found that target distance produced only small variations in reflex gains. In contrast, both SLR and LLR gains were strongly modulated as a function of target direction, in a manner that facilitated the upcoming voluntary movement. This goal-directed tuning of SLR and LLR gains was present or enhanced when the preparatory delay was sufficiently long (>250 ms) and the homonymous muscle was unloaded [i.e., when a background load was first applied in the direction of homonymous muscle action (assistive loading)]. The results extend further support for a relatively slow-evolving process in reach preparation that functions to modulate reflexive muscle stiffness, likely via the independent control of fusimotor neurons. Such control can augment voluntary goal-directed movement and is triggered or enhanced when the homonymous muscle is unloaded.


Subject(s)
Goals , Reflex, Stretch , Humans , Reflex, Stretch/physiology , Reflex/physiology , Muscles/physiology , Movement/physiology , Muscle, Skeletal/physiology , Electromyography
4.
Elife ; 112022 07 13.
Article in English | MEDLINE | ID: mdl-35829705

ABSTRACT

Muscle spindles are encapsulated sensory organs found in most of our muscles. Prevalent models of sensorimotor control assume the role of spindles is to reliably encode limb posture and movement. Here, I argue that the traditional view of spindles is outdated. Spindle organs can be tuned by spinal γ motor neurons that receive top-down and peripheral input, including from cutaneous afferents. A new model is presented, viewing γ motor activity as an intermediate coordinate transformation that allows multimodal information to converge on spindles, creating flexible coordinate representations at the level of the peripheral nervous system. That is, I propose that spindles play a unique overarching role in the nervous system: that of a peripheral signal-processing device that flexibly facilitates sensorimotor performance, according to task characteristics. This role is compatible with previous findings and supported by recent studies with naturalistically active humans. Such studies have so far shown that spindle tuning enables the independent preparatory control of reflex muscle stiffness, the selective extraction of information during implicit motor adaptation, and for segmental stretch reflexes to operate in joint space. Incorporation of advanced signal-processing at the periphery may well prove a critical step in the evolution of sensorimotor control theories.


Subject(s)
Motor Neurons, Gamma , Muscle Spindles , Adaptation, Physiological , Humans , Motor Neurons, Gamma/physiology , Movement , Muscle Spindles/physiology , Reflex
6.
J Physiol ; 599(10): 2509-2510, 2021 05.
Article in English | MEDLINE | ID: mdl-33749841
7.
Sci Adv ; 7(9)2021 02.
Article in English | MEDLINE | ID: mdl-33627426

ABSTRACT

Voluntary movements are believed to undergo preparation before they are executed. Preparatory activity can benefit reaction time and the quality of planned movements, but the neural mechanisms at work during preparation are unclear. For example, there are no overt changes in muscle force during preparation. Here, using an instructed-delay manual task, we demonstrate a decrease in human muscle afferent activity (primary spindles) when preparing to reach targets in directions associated with stretch of the spindle-bearing muscle. This goal-dependent modulation of proprioceptors began early after target onset but was markedly stronger at the latter parts of the preparatory period. Moreover, whole-arm perturbations during reach preparation revealed a modulation of stretch reflex gains (shoulder and upper arm muscles) that reflected the observed changes in spindle activity. We suggest that one function of central preparatory activity is to tune muscle stiffness according to task goals via the independent control of muscle spindle sensors.

9.
Behav Neurosci ; 132(3): 194-209, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29809047

ABSTRACT

It is generally believed that task-dependent control of body configuration ("posture") is achieved by adjusting voluntary motor activity and transcortical "long-latency" reflexes. Spinal monosynaptic circuits are thought not to be engaged in such task-level control. Similarly, being in a state of motor learning has been strongly associated only with an upregulation of feedback responses at transcortical latencies and beyond. In two separate experiments, the current study examined the task-dependent modulation of stretch reflexes by perturbing the hand of human subjects while they were waiting for a "Go" signal to move at the different stages of a classic kinematic learning task (visuomotor rotation). Although the subjects had to resist all haptic perturbations equally across task stages, the study leveraged that task-dependent feedback controllers may already be "loaded" at the movement anticipation stage. In addition to an upregulation of reflex gains during early exposure to the visual distortion, I found a relative inhibition of reflex responses in the "washout" stage (sensory realignment state). For more distal muscles (brachioradialis) this inhibition also extended to the monosynaptic reflex response ("R1"). Moreover, these R1 gains reflected individual motor learning performance in the visuomotor task. The results demonstrate that the system's "control policy" in visuomotor adaptation can also include inhibition of proprioceptive reflexes, and that aspects of this policy can affect monosynaptic spinal circuits. The latter finding suggests a novel form of state-related control, probably realized by independent control of fusimotor neurons, through which segmental circuits can tune to higher-level features of a sensorimotor task. (PsycINFO Database Record


Subject(s)
Cerebral Cortex/physiology , Learning/physiology , Motor Skills/physiology , Muscle, Skeletal/physiology , Reflex, Stretch/physiology , Spinal Cord/physiology , Adaptation, Physiological/physiology , Adult , Biomechanical Phenomena , Feedback , Female , Hand/physiology , Humans , Male , Neural Pathways/physiology , Posture/physiology , Proprioception/physiology , Synapses/physiology , Torso/physiology , Visual Perception/physiology
10.
Curr Biol ; 26(8): 1062-8, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27040776

ABSTRACT

Much has been revealed concerning human motor learning at the behavioral level [1, 2], but less is known about changes in the involved neural circuits and signals. By examining muscle spindle responses during a classic visuomotor adaptation task [3-6] performed by fully alert humans, I found substantial modulation of sensory afferent signals as a function of adaptation state. Specifically, spindle control was independent of concurrent muscle activity but was specific to movement direction (representing muscle lengthening versus shortening) and to different stages of learning. Increased spindle afferent responses to muscle stretch occurring early during learning reflected individual error size and were negatively related to subsequent antagonist activity (i.e., 60-80 ms thereafter). Relative increases in tonic afferent output early during learning were predictive of the subjects' adaptation rate. I also found that independent spindle control during sensory realignment (the "washout" stage) induced afferent signal "linearization" with respect to muscle length (i.e., signals were more tuned to hand position). The results demonstrate for the first time that motor learning also involves independent and state-related modulation of sensory mechanoreceptor signals. The current findings suggest that adaptive motor performance also relies on the independent control of sensors, not just of muscles. I propose that the "γ" motor system innervating spindles acts to facilitate the acquisition and extraction of task-relevant information at the early stages of sensorimotor adaptation. This designates a more active and targeted role for the human proprioceptive system during motor learning.


Subject(s)
Learning/physiology , Motor Skills/physiology , Muscle Spindles/physiology , Adaptation, Physiological , Afferent Pathways , Humans , Movement , Proprioception/physiology , Task Performance and Analysis
11.
Chem Commun (Camb) ; 51(30): 6591-4, 2015 Apr 18.
Article in English | MEDLINE | ID: mdl-25774882

ABSTRACT

We present a facile strategy to modify poly(dopamine) (PDA)-coated substrates. Using thiol-terminated short chain ethylene oxide oligomers (OEG) under aqueous conditions, we explore the creation of a model surface exhibiting resistance to nonspecific protein absorption (RPA) by engineering the surface properties of a PDA adlayer. Surprisingly, dithiol-terminated OEG molecules demonstrated significantly greater coverage on PDA surfaces than analogous monothiol molecules. Successful RPA is only achieved with dithiol-terminated OEGs.


Subject(s)
Indoles/chemistry , Polyethylene Glycols/chemistry , Polymers/chemistry , Proteins/chemistry , Toluene/analogs & derivatives , Adsorption , Models, Molecular , Protein Conformation , Toluene/chemistry
12.
ACS Appl Mater Interfaces ; 7(1): 662-9, 2015 Jan 14.
Article in English | MEDLINE | ID: mdl-25496538

ABSTRACT

A benzannulated boron dipyrromethene (BODIPY, bDIP) molecule exhibiting strong absorption at 640 nm was synthesized. The organic dye was used in an organic solar cell as the electron donor with C60 as the acceptor. The BODIPY dye demonstrated the best performance in lamellar architecture (indium tin oxide (ITO)/bDIP/C60/bathocuproine/Al), giving power conversion efficiency up to 4.5% with short-circuit current (JSC) of 8.7 mA/cm(2) and an open-circuit voltage (VOC) of 0.81 V. Neutron reflectivity experiments were performed on the bilayer film to investigate the thickness dependence of JSC. A 13 nm mixed layer was found to be present at the donor/acceptor interface in the bilayer device, formed when the C60 was deposited onto a room temperature bDIP film. Planar-mixed heterojunction devices were fabricated to understand the extent of spontaneous mixing between the donor and acceptor materials. The native mixed region in the bilayer device was shown to most resemble 1:3 bDIP:C60 layer in the structure: (ITO/bDIP/bDIP:C60 blend/C60/bathocuproine/Al).

13.
J Neurosci ; 34(41): 13644-55, 2014 Oct 08.
Article in English | MEDLINE | ID: mdl-25297092

ABSTRACT

Muscle spindles are commonly considered as stretch receptors encoding movement, but the functional consequence of their efferent control has remained unclear. The "α-γ coactivation" hypothesis states that activity in a muscle is positively related to the output of its spindle afferents. However, in addition to the above, possible reciprocal inhibition of spindle controllers entails a negative relationship between contractile activity in one muscle and spindle afferent output from its antagonist. By recording spindle afferent responses from alert humans using microneurography, I show that spindle output does reflect antagonistic muscle balance. Specifically, regardless of identical kinematic profiles across active finger movements, stretch of the loaded antagonist muscle (i.e., extensor) was accompanied by increased afferent firing rates from this muscle compared with the baseline case of no constant external load. In contrast, spindle firing rates from the stretching antagonist were lowest when the agonist muscle powering movement (i.e., flexor) acted against an additional resistive load. Stepwise regressions confirmed that instantaneous velocity, extensor, and flexor muscle activity had a significant effect on spindle afferent responses, with flexor activity having a negative effect. Therefore, the results indicate that, as consequence of their efferent control, spindle sensitivity (gain) to muscle stretch reflects the balance of activity between antagonistic muscles rather than only the activity of the spindle-bearing muscle.


Subject(s)
Muscle Spindles/physiology , Muscle, Skeletal/physiology , Biomechanical Phenomena , Female , Humans , Male , Movement/physiology , Muscle, Skeletal/cytology , Muscle, Skeletal/innervation , Neurons, Afferent/physiology , Physical Stimulation , Radial Nerve/cytology , Radial Nerve/physiology , Young Adult
14.
J Am Chem Soc ; 136(36): 12737-45, 2014 Sep 10.
Article in English | MEDLINE | ID: mdl-25134061

ABSTRACT

Swelling behavior of polyelectrolyte and polyzwitterion brushes derived from poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) in water vapor is investigated using a combination of neutron and X-ray reflectivity and spectroscopic ellipsometry over a wide range of relative humidity (RH) levels. The extent of swelling depends strongly on the nature of the side-chain chemistry. For parent PDMAEMA, there is an apparent enrichment of water vapor at the polymer/air interface. Despite extensive swelling at high humidity level, no evidence of charge repulsion is found in weak or strong polyelectrolyte brushes. Polyzwitterionic brushes swell to a greater extent than the quaternized brushes studied. However, for RH levels beyond 70%, the polyzwitterionic brushes take up less water molecules, leading to a decline in water volume fraction from the maximum of ~0.30 down to ~0.10. Using a gradient in polymer chain grafting density (σ), we provide evidence that this behavior stems from the formation of inter- and intramolecular zwitterionic complexes.

15.
Soft Matter ; 10(34): 6392-403, 2014 Sep 14.
Article in English | MEDLINE | ID: mdl-24930998

ABSTRACT

The effects of CO2 annealing on the melting and subsequent melt crystallization processes of spin-cast poly(ethylene oxide) (PEO) ultrathin films (20-100 nm in thickness) prepared on Si substrates were investigated. By using in situ neutron reflectivity, we found that all the PEO thin films show melting at a pressure as low as P = 2.9 MPa and at T = 48 °C which is below the bulk melting temperature (Tm). The films were then subjected to quick depressurization to atmospheric pressure, resulting in the non-equilibrium swollen state, and the melt crystallization (and/or dewetting) process was carried out in air via subsequent annealing at given temperatures below Tm. Detailed structural characterization using grazing incidence X-ray diffraction, atomic force microscopy, and polarized optical microscopy revealed two unique aspects of the CO2-treated PEO films: (i) a flat-on lamellar orientation, where the molecular chains stand normal to the film surface, is formed within the entire film regardless of the original film thickness and the annealing temperature; and (ii) the dewetting kinetics for the 20 nm thick film is much slower than that for the thicker films. The key to these phenomena is the formation of irreversibly adsorbed layers on the substrates during the CO2 annealing: the limited plasticization effect of CO2 at the polymer-substrate interface promotes polymer adsorption rather than melting. Here we explain the mechanisms of the melt crystallization and dewetting processes where the adsorbed layers play vital roles.

16.
J Neurosci ; 33(26): 10898-909, 2013 Jun 26.
Article in English | MEDLINE | ID: mdl-23804109

ABSTRACT

Recent theoretical frameworks such as optimal feedback control suggest that feedback gains should modulate throughout a movement and be tuned to task demands. Here we measured the visuomotor feedback gain throughout the course of movements made to "near" or "far" targets in human subjects. The visuomotor gain showed a systematic modulation over the time course of the reach, with the gain peaking at the middle of the movement and dropping rapidly as the target is approached. This modulation depends primarily on the proportion of the movement remaining, rather than hand position, suggesting that the modulation is sensitive to task demands. Model-predictive control suggests that the gains should be continuously recomputed throughout a movement. To test this, we investigated whether feedback gains update when the task goal is altered during a movement, that is when the target of the reach jumped. We measured the visuomotor gain either simultaneously with the jump or 100 ms after the jump. The visuomotor gain nonspecifically reduced for all target jumps when measured synchronously with the jump. However, the visuomotor gain 100 ms later showed an appropriate modulation for the revised task goal by increasing for jumps that increased the distance to the target and reducing for jumps that decreased the distance. We conclude that visuomotor feedback gain shows a temporal evolution related to task demands and that this evolution can be flexibly recomputed within 100 ms to accommodate online modifications to task goals.


Subject(s)
Feedback, Psychological/physiology , Psychomotor Performance/physiology , Adult , Analysis of Variance , Data Interpretation, Statistical , Electromyography , Female , Goals , Humans , Male , Models, Neurological , Movement/physiology , Photic Stimulation , Robotics , Young Adult
17.
Biomacromolecules ; 13(6): 1864-74, 2012 Jun 11.
Article in English | MEDLINE | ID: mdl-22530840

ABSTRACT

Coatings derived from surface active block copolymers (SABCs) having a combination of hydrophobic aliphatic (linear hydrocarbon or propylene oxide-derived groups) and hydrophilic poly(ethlyene glycol) (PEG) side chains have been developed. The coatings demonstrate superior performance against protein adsorption as well as resistance to biofouling, providing an alternative to coatings containing fluorinated side chains as the hydrophobe, thus reducing the potential environmental impact. The surfaces were examined using dynamic water contact angle, captive air-bubble contact angle, atomic force microscopy, X-ray photoelectron spectroscopy, and near-edge X-ray absorption fine structure analysis. The PS(8K)-b-P(E/B)(25K)-b-PI(10K) triblock copolymer precursor (K3) initially dominated the dry surface. In contrast to previous studies with mixed fluorinated/PEG surfaces, these new materials displayed significant surface changes after exposure to water that allowed fouling resistant behavior. PEG groups buried several nanometers below the surface in the dry state were able to occupy the coating surface after placement in water. The resulting surface exhibits a very low contact angle and good antifouling properties that are very different from those of K3. The surfaces are strongly resistant to protein adsorption using bovine serum albumin as a standard protein challenge. Biofouling assays with sporelings of the green alga Ulva and cells of the diatom Navicula showed the level of adhesion was significantly reduced relative to that of a PDMS standard and that of the triblock copolymer precursor of the SABCs.


Subject(s)
Biofouling/prevention & control , Hydrocarbons/chemistry , Polyethylene Glycols/chemistry , Water/chemistry , Adsorption , Animals , Cattle , Cell Adhesion , Diatoms/cytology , Hydrophobic and Hydrophilic Interactions , Serum Albumin, Bovine/chemistry , Surface Properties , Ulva
18.
ACS Macro Lett ; 1(6): 758-763, 2012 Jun 19.
Article in English | MEDLINE | ID: mdl-35607099

ABSTRACT

The fabrication of sub-100 nm features with bioactive molecules is a laborious and expensive process. To overcome these limitations, we present a modular strategy to create nanostructured substrates (ca. 25 nm features) using functional block copolymers (BCPs) based on poly(styrene-b-ethylene oxide) to controllably promote or inhibit cell adhesion. A single type of BCP was functionalized with a peptide, a perfluorinated moiety, and both compounds, to tune nanoscale phase separation and interactions with NIH3T3 fibroblast cells. The focal adhesion formation and morphology of the cells were observed to vary dramatically according to the functionality presented on the surface of the synthetic substrate. It is envisioned that these materials will be useful as substrates that mimic the extracellular matrix (ECM) given that the adhesion receptors of cells can recognize clustered motifs as small as 10 nm, and their spatial orientation can influence cellular responses.

19.
J Neurophysiol ; 107(3): 890-901, 2012 Feb.
Article in English | MEDLINE | ID: mdl-22072514

ABSTRACT

Optimal feedback control postulates that feedback responses depend on the task relevance of any perturbations. We test this prediction in a bimanual task, conceptually similar to balancing a laden tray, in which each hand could be perturbed up or down. Single-limb mechanical perturbations produced long-latency reflex responses ("rapid motor responses") in the contralateral limb of appropriate direction and magnitude to maintain the tray horizontal. During bimanual perturbations, rapid motor responses modulated appropriately depending on the extent to which perturbations affected tray orientation. Specifically, despite receiving the same mechanical perturbation causing muscle stretch, the strongest responses were produced when the contralateral arm was perturbed in the opposite direction (large tray tilt) rather than in the same direction or not perturbed at all. Rapid responses from shortening extensors depended on a nonlinear summation of the sensory information from the arms, with the response to a bimanual same-direction perturbation (orientation maintained) being less than the sum of the component unimanual perturbations (task relevant). We conclude that task-dependent tuning of reflexes can be modulated online within a single trial based on a complex interaction across the arms.


Subject(s)
Hand/physiology , Muscle, Skeletal/physiology , Postural Balance/physiology , Adult , Arm/physiology , Biomechanical Phenomena/physiology , Electromyography , Feedback , Female , Humans , Male , Orientation/physiology , Psychomotor Performance/physiology , Reflex/physiology , Young Adult
20.
Biofouling ; 27(6): 589-602, 2011 Jul.
Article in English | MEDLINE | ID: mdl-21985292

ABSTRACT

Fluorine-free mixed amphiphilic block copolymers with mixtures of short side groups of polydimethyl siloxane (PDMS) and polyethylene glycol (PEG) were synthesized and studied for their ability to influence the surface properties and control the adhesion of marine organisms to coated surfaces. The settlement (attachment) and strength of adhesion of two different marine algae, the green seaweed Ulva and the diatom Navicula, were evaluated against the surfaces. It is known that hydrophobic coatings based on polydimethyl siloxane elastomers (PDMSe) are prone to protein adsorption and accumulation of strongly adherent diatom slimes, in contrast to PEG-based hydrophilic surfaces that inhibit protein adsorption and moderate only weak adhesion of diatoms. By incorporating both PDMS and PEG side chains into the polymers, the effect of incorporating both polar and non-polar groups on fouling-release could be studied. The dry surfaces were characterized by X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure spectroscopy (NEXAFS). The ability of these mixed amphiphilic polymers to reconstruct in water was examined using underwater bubble contact angle and dynamic water contact angle experiments. To understand more about surface reconstruction behavior, protein adsorption experiments were carried out with fluorescein isothiocyanate-labeled bovine serum albumin (BSA-FITC) on both dry and pre-soaked surfaces.


Subject(s)
Biofouling/prevention & control , Diatoms/drug effects , Dimethylpolysiloxanes/chemical synthesis , Polyethylene Glycols/chemical synthesis , Surface-Active Agents/chemical synthesis , Ulva/drug effects , Adsorption , Diatoms/physiology , Dimethylpolysiloxanes/pharmacology , Fluorine/chemistry , Photoelectron Spectroscopy , Polyethylene Glycols/pharmacology , Proteins/chemistry , Surface Properties , Surface-Active Agents/pharmacology , Ulva/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...